学年

質問の種類

数学 高校生

【数I】 255番の(1)の問題で、Sx=√32をどうやって5.6565...になるのか分かりません、 (矢印で?が付いているところです) 教えて頂きたいです🙇‍♀️

教p.178 問1 253 次の表は、5人の国語のテストの得点である。 それぞれの得点の偏差を求めよ。 (1) AD BC A D E C B 得点 75 79 86 77 83 5人の得点の平均値は -A se 5 -(75+79+86+77+83) = = 80 (点) となり、得点の偏差は次の表のようになる。 = A B C D E 得点 75 79 86 77 83 偏差 -5 -1 6 -3 3 教p.180 問2 DECORA 254 253 において、5人の国語のテストの得点の分 散 s2, 標準偏差s を求めよ。 MARJ }-{(−5)² + (−1)² +6² + (−3)² +3²} 5 したがって CHIAFLON x 400 × 80 = 16 s=√16=4 (点) 教p.180 #問3/ EVS = DA==ÃO 255 次の表は,生徒A,B2人の5回の理科のテ ストの得点である。 FEA 1 2 3 4 5 Aの得点 68 64 52 56 60 Bの得点 62 64 60 56 58 (1) Aの得点の分散 Sx2, 標準偏差 sx を求めよ。 ただし, Sx は小数第3位を四捨五入して求め よ。 なお, 電卓などを用いてもよい。 248 Aの5回の得点の平均値は 011 5 60 (点) となり, Aの得点の偏差は, 次の表のようになる。 回 1 2 3 4 5 Aの得点 68 64 52 56 60 Aの偏差 8 4 -8-4 0 05 Sx (68+64 +52 +56+60) したがって 1 - {8² +4² + (−8)² + (−4)² +0²} T&S 5 1 5 ×160=32 ‚S\= 8A ACAOFRO Sx=√32=5.656・・・≒5.66 (点) JA (0) (2) Bの得点の分散 sy2, 標準偏差 sy を求めよ。 ただし, sy は小数第3位を四捨五入して求め よ。 なお, 電卓などを用いてもよい。 Bの5回の得点の平均値は+8 1 ( 62 + 64 + 60 +56 +58) 5 11/13 5 = 60 (点) となり, Bの得点の偏差は, 次の表のようになる。 1 2 Bの得点 62 64 x 300 したがって 60 Bの偏差 2 4 0 3600 "a81 X 40 = 8 × 300 2 sy² = — - {2²- {2² +4² + 0² + (-4)² + (−2)²} Sy 4 5 56 58nia (S) -4-2 AA 平均館× う人の記録の (14+ Sy=√8=2.828・・・≒ 2.83 (点) 記録 (3) Aの得点とBの得点の散らばりの大きさを比 較して, 分かることを説明せよ。 分散,標準偏差は、ともにAのほうがBよりも 大きいから, Aのほうが得点の散らばりが大きい と考えられる。 の2

解決済み 回答数: 2
数学 高校生

数Aの分散と標準偏差の問題です。 (1)なのですが、ノート黄色マーカー部分の自分の計算式のどこが間違っているのか分からないため、 解説をお願いします。

画 164 分散と標 下の表はX, Y の2人があるゲームを行った結果である。 試合 Xの得点(点) Yの得点(点) (1) X, Y それぞれの得点の平均値 x, 思考プロセス 定義に戻る 分散 82 標準偏差 解 (1) x= 2 Sx² = Sx = - y 1 2 3 Sy 3 2 1 /2.8 2 3 5 1 4 標準偏差=√分散 これらの値が大きいほど, データの散らばりも大きい。 Action » 分散は, (偏差) の平均値を計算せよ /280 10 2 3 5 分散 sx2, Sy2, 標準偏差 Sx, sy を求めよ。 ただし、 標準偏差については,√2 1.41,√5= 2.24, √7= 2.65 とし, 小数第2位を四捨五入して答えよ。 (2) (1) から,X, Y の2人の得点の散らばりはどちらが大きいか。 0 2 ... 5² = - = -¹²- {(x₁ − x)² + (x₂ − x)² + ··· + (xn− x)²} n 6 5 1 7 4 √√2x√√√5x√√7 5 0 - ( 3 +1 +5 +2 +0 +5 +4 +5 +3 +2)=3 (点) 10 = n個のデータ Xi, X2, .', Xn の平均値をxとすると DOHTEL DOSSI {(3-3)²+(1-3)² + (5 − 3)² + (2 − 3)² + (0 − 3)² 10 +(5− 3)² + (4 − 3)² + (5 − 3)² + (3 − 3)² + (2 − 3)²} = 2.8 8 ≒1.7 (点) 5 1 = ( 3 +2 +1 +3+2+1 + 0 + 1 + 4+ 3 2 (点) 10 1 9 -{(3−2)²+(2−2)² + (1−2)² + (3−2)² + (2−2)² 10 +(1-2)² + (0-2)²+(1-2)²+(4-2)²+(3-2)²} = 1.472-0011 26THOD √140 √5×√7 Sy=√1.4 ≒1.2 (点) 10 5 (2) Sx > sy より X の方が得点の散らばりが大きい。 3 4 2 得点xの中央値は3点 第1四分位数は2点 第3四分位数は5点 3 (偏差)の平均値 よって,得点xの箱ひげ 図は下の図のようになる 0 1 2 3 4 5 (点) 練習 164 下の表は A,Bの2人があるゲームを行った結果である。 試合 得点yの中央値は2点 第1四分位数は1点 第3四分位数は3点 よって, 得点yの箱 図は下の図のように T 1 L 234

解決済み 回答数: 1