学年

質問の種類

数学 高校生

18.3 6個あるものから4つ選び(6C4)、 その中の1つを固定して考えた(3!)のですが この解き方でも大丈夫ですかね??

324 基本例題 18 円順列・じゅず順列 (1) 異なる6個の宝石がある。 (1) これらの宝石を机の上で円形に並べる方法は何通りあるか。 (2) これらの宝石で首飾りを作るとき, 何種類の首飾りができるか。 (3) 6個の宝石から4個を取り出し, 机の上で円形に並べる方法は何通りあるか ■p.323 基本事項 解答 (1) 6個の宝石を机上で円形に並べる方法は Po =(6-1)!=5!=120 (通り) 6 (2) (1) の並べ方のうち, 裏返して一致するものを同じものと考 (6-1)! 2 指針 (1) 机の上で円形に並べるのだから, 円順列と考える。 (2) 首飾りは,裏返すと同じものになる。 例えば 右の図の並べ方は円順列としては異なるが, 裏返す と同じものである。 このときの順列の個数は、円順 列の場合の半分となる (下の検討参照)。 (3) 1列に並べると 6P4 これを,回転すると同じ並べ方となる4通りで割る。 200 いずれの場合も基本となる順列を考えて、 同じものの個数で割ることがポイントとなる。 CHART 特殊な順列 基本となる順列を考えて同じものの個数で割る えて (3) 異なる6個から4個取る順列 P4 には、円順列としては同 じものが4個ずつあるから JARL 4 = 60 (種類) 6P4_6・5・4・3 4 -T = = 00000 -=90 (通り) (3) 2 20 3 Q T 1つのものを固定して他の ものの順列を考えてもよい。 すなわち, 5個の宝石を1 列に並べる順列と考えて! 一般に、異なるn個のもの からr個取った円順列の Pr 総数は 4+ (1 (2)

回答募集中 回答数: 0
数学 高校生

37(1)で例えば f についてだと、解説では f1、 f2 に分けて考えているけど実際fは同じものだから2の階乗で割る必要があると思うのですが、、、 教えて頂けると嬉しいです🙇‍♀️🙏💦

16 00000 基本例題 37 順列と確率 (2) 同じものを区別する coffee の6文字を次のように並べるとき、各場合の確率を求めよ。 (1) 横1列に並べるとき, 左端が子音でかつ母音と子音が交互に並ぶ確率 P.32 基本事項 (2) 円形に並べるとき, 母音と子音が交互に並ぶ確率 指針 ... 確率の基本 同じものでも区別して考える に従い、2個ずつある fとeをそれぞれ区別して, fs, fz, e1, ez と考える。 (1) まず, 子音を並べ、次にその間と右端に母音を並べる。 (2)「円形」に並べるから、円順列の考えを利用する。 まず, 子音を円形に並べて固 定し、次に子音と子音の間に母音を並べる。 注意 アルファベット26文字のうち, a,i,u, e, o を母音, 残り 21 文字を子音という。 2 個の f を f1,f2, 2個のe をeezとすると, 母音は 0, 解答 1, 2,子音は c, f1, f2 である。 (1) 異なる6文字を1列に並べる方法はP=6! (通り) 子音3文字を1列に並べる方法は 3P3=3! (通り) そのおのおのについて,子音と子音の間および右端に 母音3文字を並べる方法は 3P3=3! (通り) よって, 求める確率は 3!×3! 1 6! 20 (2) 異なる6文字の円順列は (6-1)!=5! (通り) 子音3文字の円順列は (3-1)! 2! (通) そのおのおのについて,子音を固定して, 子音と子音の 間に母音3文字を並べる方法は P3=3! (通り) よって、求める確率は 2!×3! 5! A.B.C ****** = 1 10 <指針」 の方針 確率では,同様に確から しいことが前提にあるた め、 同じものでも区別し て考える。 左端は子音 COL 口口口 母音 積の法則を利用。 YA (4) 固定 [] に母音を並べる。

回答募集中 回答数: 0
数学 高校生

(3)解説お願いします🙇🏻‍♀️

カ と 12 重要 例題 3 同じものを含む円順列 じゅず順列 ガラスでできた玉で, 赤色のものが6個, 黒色のものが2個, 透明なものが 1個ある。 玉には,中心を通って穴が開いているとする。 (1) これらを1列に並べる方法は何通りあるか。 これらを丸く円形に並べる方法は何通りあるか。 これらの玉に糸を通して首輪を作る方法は何通りあるか。 602 CHART O OLUTION 解答 (2) 回転したとき他の円順列と一致しないように, 透明な玉1個を固定する。 (3) じゅず順列の総数を求める問題。次のように分けて考える。 「左右対称である円順列」と「左右対称でない円順列」 8.7 8! 6!2! 2・1 9! 6!2! (1) 1列に並べる方法は (2) 透明な玉1個を固定して, 残り8個 を並べると考えて 裏返すと 自分自身 -=28(通り) PRACTICE... 31 9 STREA 9.8.7 2・1 4通り よって、左右対称でない円順列は 28-424 (通り) この24通りの1つ1つに対して、裏 返すと一致するものが他に必ず1つ ずつあるから、首輪の作り方は +24=16(通り) (3) (2) 28通りのうち、右下の図のOGAIO ように左右対称になるものは D.TOURE -252 (通り) レープに 基本 17, 重要 21 裏返すと 自分以外 の円順列 ◆同じものを含む順列。 279 ◆赤玉6個, 黒玉2個を1 列に並べる場合の数。 inf 解答編 p.216 にすべ てのパターンの図を掲載し た。 左右対称でないものは、 裏返すと一致するものがペ アで現れることを確認でき るので参照してほしい。 列に並べる方法は 1章

回答募集中 回答数: 0
数学 高校生

(3)解説お願いします🙇🏻‍♀️

カ と 12 重要 例題 3 同じものを含む円順列 じゅず順列 ガラスでできた玉で, 赤色のものが6個, 黒色のものが2個, 透明なものが 1個ある。 玉には,中心を通って穴が開いているとする。 (1) これらを1列に並べる方法は何通りあるか。 これらを丸く円形に並べる方法は何通りあるか。 これらの玉に糸を通して首輪を作る方法は何通りあるか。 602 CHART O OLUTION 解答 (2) 回転したとき他の円順列と一致しないように, 透明な玉1個を固定する。 (3) じゅず順列の総数を求める問題。次のように分けて考える。 「左右対称である円順列」と「左右対称でない円順列」 8.7 8! 6!2! 2・1 9! 6!2! (1) 1列に並べる方法は (2) 透明な玉1個を固定して, 残り8個 を並べると考えて 裏返すと 自分自身 -=28(通り) PRACTICE... 31 9 STREA 9.8.7 2・1 4通り よって、左右対称でない円順列は 28-424 (通り) この24通りの1つ1つに対して、裏 返すと一致するものが他に必ず1つ ずつあるから、首輪の作り方は +24=16(通り) (3) (2) 28通りのうち、右下の図のOGAIO ように左右対称になるものは D.TOURE -252 (通り) レープに 基本 17, 重要 21 裏返すと 自分以外 の円順列 ◆同じものを含む順列。 279 ◆赤玉6個, 黒玉2個を1 列に並べる場合の数。 inf 解答編 p.216 にすべ てのパターンの図を掲載し た。 左右対称でないものは、 裏返すと一致するものがペ アで現れることを確認でき るので参照してほしい。 列に並べる方法は 1章

未解決 回答数: 0