学年

質問の種類

数学 高校生

数Ⅲ 基礎門40(3) 解説を読んでも理解出来ませんでした💦詳しく教えてください🙇‍♀️

68 第3章 40 逆関数 (2)とするとき。 次の問いに答えよ。 (y=f(x)の逆関数y=f(x) を求めよ.バー) ② 曲線 C:y=f(x) と曲線 Ca:y=f'(x) が異なる2点で交わる ようなαの値の範囲を求めよ. (3) C. の交点の座標の差が2であるとき, aの値を求めよ。 〈逆関数の求め方〉 (012) ( y=f(x)の逆関数を求めるには,この式を x=(yの式)と変形し, xとy を入れかえればよい 〈逆関数のもつ性質〉 I. もとの関数と逆関数で,定義域と値域が入れかわる eto Ⅱ. もとの関数と逆関数のグラフは, 直線 y=x に関して対称になる 逆関数に関する知識としてはこの3つで十分ですが,実際に問題を解くとき 〈逆関数のもつ性質〉を上手に活用することが必要です。 この基礎問では,IIが ポイントになります。 解答 (1)y=√ax-2-1 とおくと, √ax-2=y+1 よって, y+1≧0 より,値域は y≧-1 ここで,両辺を2乗して, 1大切!! ax-2=(y+1)2 . a x=1/2(y+1)+1/2 (y-1) 2 a *>, ƒ³¹(x) = 1½ (x+1)²±²² (x≥−1) a a 【定義域と値域は入れ かわる 注 「定義域を求めよ」とはかいていないので,「x≧-1」は不要と思う 人もいるかもしれませんが、xの値に対してyを決める規則が関数で すから、xの範囲,すなわち, 定義域が「すべての実数」でない限り は,そこまで含めて「関数を求める」と考えなければなりません. ey=f(x)とy=f(x)のグラフは、凹凸が異なり,かつ,直線

回答募集中 回答数: 0
数学 高校生

数Ⅲ 基精 40(2) Y=f(x)とY=f^−1(x)の凹凸が異なりかつY=Xに関して対象というのはどのように判断すれば良いのでしょうか??🙇🏻‍♀️

第3章 いろいろな関数 問 68 40 逆関数 f(x)=var-2-1 (a>0x とするとき, 次の問いに答えよ、 f(x)の逆関数y=f(x) を求めよ. ② 曲線 C:y=f(x) と曲線 C2y=f(x) が異なる2点で交わる ようなαの値の範囲を求めよ. (3) C,Cの交点の座標の差が2であるとき, αの値を求めよ。 講 <逆関数の求め方〉 y=f(x)の逆関数を求めるには,この式を x=(yの式)と変形し, xとy を入れかんよい 〈逆関数のもつ性質〉 I. もとの関数と逆関数で,定義域と値域が入れかわる Ⅱ. もとの関数と逆関数のグラフは, 直線 y=x に関して対称になる <逆関数のもつ性質〉を上手に活用することが必要です. この基礎問では,I 逆関数に関する知識としてはこの3つで十分ですが,実際に問題を解くとき ポイントになります。 リーェに関して で交わる」こと fy-f(x) E よって、 2次 すなわち、エ 範囲で異な 求める。 そこで、 この2次 ( I A a>0. : a (3) (2) の B- a (別解) (1)y=√ax-2-1 とおくと, √ax-2=y+1 よって, y+1≧0 より 値域は y≧-1 ここで,両辺を2乗して, ポ 1大切!! ax-2=(y+1)2 .. X=- x = 1 (y+1)²+²² (y≥ −1) 定義域と値域は入れ かわる 演習問 a a £ɔT, ƒ¯¹(x)=±±²(x+1)²+²±²² (x≥−1) 2 a 注 「定義域を求めよ」とはかいていないので,「r≧-1」は不要と思う 人もいるかもしれませんが,xの値に対して」を決める規則が関数で すから、この範囲,すなわち, 定義域が 「すべての実数」でない限り は、そこまで含めて 「関数を求める」 と考えなければなりません。 (2)y=f(x)とy=f(x) のグラフは,凹凸が異なり,かつ,直線

回答募集中 回答数: 0
数学 高校生

(2)の問題ではどうして線で引いたところをしめすと最終的にxとy、最小値がでているのか理解できません。どうしてなのか教えてください。

66 第3章 2次関数 基礎問 ● 38 最大 最小 (IV) x, yがすべての実数値をとるとき, z=x2-2.xy+2y2+2.4g+3 について,次の問いに答えよ. (1)yを定数と考えて, xを動かしたときの最小値mをyで表せ (2)(1)のmにおいて,yを動かしたときの最小値を考えることで、 精講 zの最小値とそのときのx,yの値を求めよ. 変数が2つ(xとy)ありますが,37のように文字を減らすこと できません.このような場合でも,変数が独立に動くならば、 の文字を定数と考えることによって, 最大値や最小値を求められます。 解答 (1) z=x2-2(y-1)x+2y2-4y+3 ={x-(y-1)}2-(y-1)2+2y2-4y+3 ={x-(y-1)}2+y^-2y+2 よって,m=y2-2y+2 ●式をxについて整理 ●平方完成 Rayをab.cと同じにする 39 最 △ABO 上にAI 垂線 DE (1) 長方 (2) Sの 長 精講 V (1) AI .. ま ま (2)m=y-2y+2=(y-1)+1 .z={x_(y-1)}2+(y-1)2+1 {x-y-1)}2≧0, (y-1)2 ≧0 だから -(y-1)=0 かつ, y = 1, すなわち A,Bが実数のとき A2+B2≧0 等号は A=B=0 (2) DE S= x = 0, y=1のとき, 最小値1をとる. のとき成りたつ ポイ ② ポイント 2変数の関数の最大・最小を求めるとき,それらが 立に動くならば、片方を定数と考えてよい ※定数・一定の数y=ax+bx+cにおけるa,b,c 演習問題 38 x, y がすべての実数値をとるとき, 32+2xy+y+4x-Aut 演習問題 39

未解決 回答数: 1
数学 高校生

青チャート例題38(2)(3)より2次式の解の種類について質問です。 Kの場合わけしないといけないのは分かるのですが何故(2)は実数全てにおいて異なる二つの実数解になるんですか? (3)のように>0、=0、<0で場合分けする必要はないんでしょうか? また(2)のような答えに... 続きを読む

68 88 基本 例題 38 2次方程式の解の判別 0000 (3)x2+2(k-1)x-k2+4k-3=0 次の2次方程式の解の種類を判別せよ。 ただし, kは定数とする。 (2) 2x²-(k+2)x+k-1=0 (1) 3x²-5x+3=0 基 k p.66 指針 2次方程式 ax2+bx+c=0の解の種類は, 解を求めなくても, 判別式D の符号だけで 別できる。 異なる2つの実数解 質 公小 2次方程式の解の判別 D=0⇔重解 重解はx=- 2a D0⇔異なる2つの虚数解 解答 (2),(3) 文字係数の2次方程式の場合も,解の種類の判別方針は,(1)と変わらないが がkの2次式で表され,kの値による場合分けが必要となることがある。………… 与えられた2次方程式の判別式をDとすると (1) D=(-5)-4・3・3= -11<0 をも よって、異なる2つの虚数解をもつ。 つの (2) D={-(k+2)}-4・2(k-1)=k+4k+4-8(k-1) =k-4k+12=(k-2)2+8 ゆえに、すべての実数kについて よって、異なる2つの実数解をもつ。 する D>0 (3) 1/2=(k-1)^-1.(k+4k-3)=2k²-6k+4 =2(k2-3k+2)=2(k-1)(k-2) よって, 方程式の解は次のようになる。 D0 すなわちん <1,2 <kのとき 異なる2つの実数解 D = 0 すなわち k=1, 2 のとき 重解 D<0 すなわち 1 <k<2のとき 異なる2つの虚数解 D<0 一D>0」 CHES OF T {-(k+2)}2 の部分は, (1)2 =1なので, (+2 と書いてもよい。 1+CIDA ax2+2b'x+c=0 では D 4 α <βのとき 利用する (x-α)(x-B)>0 ⇔x<a, B<x α <βのとき (x-α)(x-B)<0 ⇒a<x<B D>0- 2 練習 次の2次方程式の解の種類を判別せよ。 ただし, kは定数とする。 31-12x 指

未解決 回答数: 1