学年

質問の種類

数学 中学生

平方根の利用の問題です (2)の回答のx2乗=2まではわかるのですが、その後がわかりません😓 教えてください!

x. 平方根の利用 1 この問題集は, B5判とよばれる大き さである。 B5判の長方形を2つ並べると, B4判という長方形ができる。 B5判と B4判は, 長方形の短い辺と長い辺の長 さの比が等しくなるように作られている。 下の図のように,この問題集を並べて B5判の長方形ABCD と B4判の長方形 EFGH をつくる。 B 数学の学習ノート 3 D E 思・判・表 P.63~65 EH: EF= JC H AB=x, AD=1 とするとき, 次の問い に答えなさい。 1)次のにあてはまる数や文字を入れなさい。 EH=AB だから, EH= IC EF=2AD だから, EF= 2 …..② ①,②から, : 2 数学の学習ノート3 数学の学習ノート 3 (2) B5判の短い辺と長い辺の長さの比を、 次のように求めた。 にあてはまるもの を入れなさい。 B5判と B4判の長方形の短い辺と長 い辺の長さの比が等しいから, AD: AB= EH :EF すなわち, 1:x= IC 比例式の性質より よって, xは ほう 2 : 2 2 の平方根の正の . だから, x=√2 したがって, B5判の短い辺と長い辺 2 の長さの比は, 1 ある。 材を 切り口の正 求めなさい。 丸太の直径が よい。 この (3) B5判の短い辺の長さは182mmである。 (2)で求めた比を使って, B5判の長い辺の 長さを求めなさい。 ただし,√2=1.41 とし, 小数第1位を四捨五入して整数で求めなさ ×60× (2) 切り およそ (正方 (132) よっ B5判の長い辺の長さをymmとすると, (2)から、 182:y=1:√2 y=182√2 182√2=182×1.41=256.62 だから 小数第1 捨五入すると, 257mm 257

回答募集中 回答数: 0
数学 高校生

最後の注の部分の比例式が成り立つのは何故なのか分からないので、 解説して欲しいです。 よろしくお願いします

9 連立1次方程式 / 連立方程式の解の存在条件 [(a−2)x+4ay=−1 の定数として、次のエリについての連立方程式を考える。ょー (34+1)y=a ] のとき, この連立方程式の解は存在しない. (麗澤大) [] のとき, この連立方程式の解は無数に存在する 等式の条件の扱い方 等式の条件式が1個与えられたら,それを使ってどれか1文字を消去するの が原則的な手法である.x,yの連立1次方程式の場合,例えば一方の式からxをyで表して、他方の式 に代入するとyの1次方程式に帰着できる. xの方程式x=gの解 p=0のときx=2, p=0 かつ g=0のときxは任意, p=0 かつq≠0 のとき解なし Þ 解答 100>A 70 A<[X] @ 1 (a−2)x+4ay=-1 >x> [<]X[** (2) x-(3a+1)y=a 3 であり、 ②により, x=(3a+1)y+a ③を①に代入して, (a−2){(3a+1)y+a}+4ay=−1 .. (3a²-a-2)y=-a²+2a-1 ④ (a-1)(3a+2)y=-(a-1)2 の方程式④の解y に対して, ③ によりxがただ1つ定まり, 連立方程式 ①か つ②の解(x,y) がただ1つ定まる. よって, 連立方程式の解が 「存在しない・無数に存在する」 条件は、④の解が 「存在しない・無数に存在する」ことと同値である. よって, ④ から のとき解なし. 3 (a-1)(3a+2)=0かつ-(α-1)20, つまり α=- (a-1)(3a+2)=0かつ(a-1)2=0, つまり α=1のとき解は無数 . 注連立1次方程式の解の存在条件を座標平面で考える方法もある. |ax+by=e... Ⓒ ((a, b)=(0, 0) lcx+dy=f・イ (c, d)=(0, 0) 一般に, を考えてみよう.xy平面上でアイは直線を表す. アとイが交われば,その交 点の座標が連立方程式の解である. したがって, ●解が存在しないということは,直線アとイが共有点をもたない,つまりアとイ が平行で一致しないことと同値. ●解が無数に存在するということは,直線アとイが一致することと同値. —ということになる. 直線アとイが平行である (一致も含む) ための条件は、 a:b=c:d(← ad-bc=0) a TRAN a= a= 方程式の解が存在する・存在しな いをとらえるには, 実際に求めよ うと考えればよい.y を求めるな ら ④式を導くところ. 0-1,84502121 3012120 T I+=2(1-1) +3021 本問の場合、次のようになる. ①と②が平行 (一致も含む) であ あるための条件は,十 (a−2): 4a=1:{-(3a+1)} (a-2) (3a+1)-4a=0 ∴.3a²-a-2=0 2 a=- 1 XJIK 3' これらのときの ① ② を求め, 致するかどうか調べる (α=1の ときのみ一致する).

回答募集中 回答数: 0