学年

質問の種類

数学 中学生

【大至急 一次関数の利用】(2)の②がわかりません。 詳しい解説お願いします🙇🏻‍♀️

3 A町とD町の間を2台のバス, gが往復しています。 図1のように,A町バス停とD 町バス停の間に,順にB町, C町のバス停があり, A町バス停から8000m離れたところ B町バス停があり、その間にE地点があります。 B町バス停から7000m離れたところ C町バス停があり,さらにC町バス停から5000m離れたところにD町バス停がありま す。ただし,A町,B町,C町, D町のバス停とE地点は,一直線の道沿いにあり,2 台のバスは,それぞれこの道を移動することとします。後の(1),(2)の各問いに答えな さい。 図 1 am 8:4 A 町 84~2 E地点 B町 8000m CHT DHJ -7000m 5000m (1)バス』はA町バス停を午前8時に出発しました。 A町バス停からxm離れたところにあ るE地点までは分速600mで進み,E地点を通過すると同時に分速500mで進み, B町バス 停には午前8時14分に到着しました。 xの値を求めなさい。 14 600×14= 2400 (2) バスカはB町バス停に午前8時14分から何分間か停車し, その後一定の速さでC町バ ス停に進み, C町バス停でも何分間か停車しました。 図2は、バスの移動のようすに ついて,午前8時x分のA町バス停からの距離をymとして,xとyの関係をグラフに表 したものです。 ただし,グラフではバスがB町バス停に着いてからC町バス停を出発 するまでの移動のようすを示しています。 後の①、②の各問いに答えなさい。 図2 (m)y 20000 18000 16000 14000 12000 10000 8000 6000 4000 2000 0 10 20 x 30 30 分 (分)

回答募集中 回答数: 0
数学 高校生

どうして2回の試行を行っているのに反復試行を使っていないのでしょうか?あと、(2)の確率分布表のPが3/1になるのはどうしてですか? 解説お願いします🙇

10箱の中に1から3までの数字を書いた球がそれぞれ1個ずつ、計3個入っている。 この箱の中から1個の球を取り出すことを2回行う。 (1)1回目に取り出した球を元に戻して2回目を取り出す場合 1回目、2回目に取り出した球に書かれた数字をそれぞれX 023 とする。x=2 11 ア ウ X=1 となる確率はP(X=1- Y=2 となる確率はP(Y=2)= であり, イ I オ X=1 かつ Y = 2 となる確率はP(X=1, Y=20) = である。 また、確率変数Xとは キ 12 23 7x344 2x = +5x= キ に適するものを、次の① ② のうちから一つ選べ。 ① 独立である 独立でない 1+2+3 このとき, X, XY の期待値 (平均) はそれぞれE(X) E(XY= であり, X, X+Y の分散はそれぞれV(X) V(X+1)= ス である。 1/123 (12) +2x3+5% 14449-4 (1-2)/32+(2-2-2)^(1/3 +1/+1 (2)1回目に取り出した球を元に戻さずに2回目を取り出す場合 1回目, 2 回目に取り出した球に書かれた数字をそれぞれ X', Y' とする。 X' = 1 となる事象を A, Y' =2となる事象をBとすると, セである。 また,E(XY)である。 ①②③ セ の解答群 123 α=1,A M Y=2B (1/2) ( WF 14 ① 事象A と事象 Bは独立 2 事象 A と事象 Bは従属 ソ に適するものを、次の①~③のうちから一つ選べ。 ② ~ P(A) = P(x-1)=1 / PBB) = Pα==== P13 2+216 ③ 36計 x12361

回答募集中 回答数: 0
数学 中学生

(4)の問題がわかりません。

2 ばねにはたらく力について調べるため、次の実験12を行いました。 これに関して、あとの(1)~(4) の問いに答えなさい。 ただし, ばねの質量は考えないものとし、 質量 100gの物体にはたらく重力の大 きさを1Nとします。 実験 1 ① 水平な台の上にスタンドを置き、つり棒を使ってば 図1 ねX をつるした。 つり棒 ② 図1のように, ばねXに1個 20gのおもりをつる し ばね X の長さを調べた。 ③ ばねにつるす, 1個 20gのおもりの数を変えなが ら,②と同様にしてばねXの長さを調べた。 ④ばねXのかわりにばねY を使い, ② ③と同様の実 ものさし 験を行った。 2 表は,②~④の結果をまとめたものである。 表 08 Tib おもりの数 0 1 2 3 4 5 ばね X の長さ [cm] ばね Yの長さ [cm] 4.0 6.06 6.8 5.2 7.6 8.4 9.2 10.0 6.4 7.6 8.8 10.0 図2 ⑤ ばね X と Y を図2のようにつなぎ、 ある質量の物 体Aをつるしたところ, ばね X と Y をつないだ全体 の長さは 17.0cmになった。 ばね X つり棒 (1) 次の文章は, 実験1の結果について述べたものである。 文章中の 「力」, 「比例」 ということばを用いて簡潔に書きなさい。 にあてはまる内容を, あと列する 表から, ばね XとYののびをそれぞれ求めることができる。 その結果から, ばねののびは ということがわかる。 ばねを引力の大きさにする。 (2) 図4は, つり棒を使ってばねをつるし, そのばねにおもりをつ るして, 静止した状態を表している。 また, F1~F5の矢印は, つりばね、おもりにはたらく力を表している。 F1~Fのう ち, ばねにはたらく力を組み合わせたものとして最も適当なもの 次のア~エのうちから一つ選び、その符号を書きなさい。 F1 F2 図4 つり棒 F F2 ばね F1とF4 ウ F3とF4 エ F3とFs F3 おもり FA Fs (3) 次の文章は, 実験1の⑤について述べたものである。 文章中の m も適当な数値を,それぞれ書きなさい。 n にあてはまる最 ばね X Y 物体A -12 X ばね XとYを図2のようにつないだとき, 加わる力が0.1N大きくなると, つないだばね全体 ののびが m cm大きくなる。 物体Aをつるしたとき, ばねX と Y をつないだ全体の長さ が 17.0cmになったことから, 物体Aの質量は n gであることがわかる。 \ > 10 h > 70g WALBUST (4) 実験2で, ばね Xの長さが7.2cmになったとき、 電子てんびんが示す値は何Nか,書きなさい。 0 6.07.2 0.7N 060-772 実験 2 ① 図3のように, 実験1で使用したばね Xに, 直方体 質量100gの物体Bをつるし, つり棒の位置を少 しずつ下げながら, 電子てんびんの上に降ろしていっ た。 ② 物体Bの底面と電子てんびんが接し, 電子てんびん がONを示したところから, ばねののびが0cmにな るまで, 電子てんびんが示した値とばねののびの関係 を調べた。 図3 -物体B 計量皿 電子てんびん -2- 5:20=x17 20×85 x=00 -3-

回答募集中 回答数: 0
理科 中学生

(1)4/5になるのがよく分からない (2)全体的に分からない。 解説お願いします🙏

④ ばねののび② 21C (香川改) <6点×3 ばねの上端をスタンドに固定し、 ばねの下端におもりをつるし て ばねののびを測定する。 強さの異なる2本のばねXとYにつ いて、この方法で測定すると、図のような結果になった。 (1) 次の文中の①の[]内から正しいものを1つ選びなさい。 ま た、 ②にあてはまる数を書きなさい。 ばねののびとばねを引く力の大きさとは ① 〔ア 比例 イ 987654321 ばねののび [cm]3 ばねY B 1 0 1 2 3 4 5 6 反比例]している。 また、 ばねXとばねYのばねののびを同じ にするには、ばねYを引く力の大きさの2倍の力でばねX を引けばよい。 おもりの個数 [個] 年 (1)① (2) 実験で用いたおもりとは異なる2個のおもりP QとばねZ を用意した。 ばねXにおもりPをつるしたところ、 ばねののび は4.5cmであった。 次に、 ばねYにおもりQをつるしたところ、 ばねののびは2.4cmであった。 実験で用いたおもりを1個つ るすとばねののびが1.4cmになるばねZに、 おもりPとQを 同時につるすと、 ばねののびは何cmになるか。 ✓② (2) ヒント (2) ばねXが 4.5cm、 ばねYが2.4cmの びるのは、それぞれおもり が何個のときかな。

回答募集中 回答数: 0
数学 高校生

このノートの(4)(ii)で、 xとyの最大公約数をgとすると、なぜ g=2^a×3^b×5^c×11^dになるんですか?

ET D Lake A P B BO [D 13 60 A A 15 C 8 B 接弦定理より∠ABD=∠ACBであり、 <Aは共通であるから、 の最大公約数をgとすると、 (i) x x Y or (i)よりa,b,c,dを Osas3, 08652.0 C≤2.0d₤17 満たす整数として d g=2x30x5x119と表せる。 acyの正の公約数の総和2604 よって、 △ABDCACBである。 AB:BD=AC:CB はgの正の公約数の総和に 楽しいので、 であるから、8:BD=15:13 15BD=104 2604=(1+2+…+2)(1+3+-+36) (I+ 5 +---+59) (I+ (1 +- +11) BD=104 である。Osa3.0/2.02. osd/1より、 (4)を正の整数とし、y=19800とする。 となの正の公約数の総和は 2604である。 (ⅰ) yを素因数分解 2119800 2 19900 214950 312475 31 15 +13 X12 45 15 62 31 31825 51275 5155 ( y=28.38.5:1 (ii)xとyの最大公約数 195372 yの公約数の総和 (2+2+2+2))(3+3+3)(5°+5+5) × (11°+11) 372 =(1+2+4+8)(1+3+9)(1+5+25)(1+) '9'0 13651=15×13×31×12 585 72'5'40 212604 211302 31651 71217 31 (+2+…+2=1.1+2,1+2+2+1+2+2+2 =1.3.7.15 (+3+430=1.13.1+3+3=1.4.13 1+5+…+5=1.1+5,1+5+5=1.6.31 1+1+パントけ11=1.12であり 2604=223.7.31 であるから、 ②の右が7の倍数であるにはa=2が 必要で、③のなが3の倍数であるにはC=2 が必要である。このとき③は 22×3×7×37×(1+3+39)x3x(HH-11 すなわち12=(1+3+…+3%)(1+11+..+ となる。「ほたは4または13」と「ほまたは12」の積 が12となるのは1×12のときのみなので、 b=0,d=1である。以上より、 g=23×3×5×11=1100

回答募集中 回答数: 0