学年

質問の種類

数学 高校生

(2)の問題がわかりません。 散布図は、1に近いので正の相関は、わかりますが、図の書き方がわかりません。なので➃か⑥で迷いました。 あと、ケの範囲はどう求めますでしょうか? 教えていただきたいです。🙇‍♀️

9 8/6/ Ex 14 データの相関関係 男女5人ずつが, 国語と数学のテ 制限時間 15分 男子 女子 ストを受けた。 国語 45 37 39 31 23 33 35 46 41 29 (1) 男子の国語の点数の平均値は 35点 分散は56 であり, 男子 の数学の点数の平均値は アイ点,分散はウエである。 また, 男子の国語と数学の 点数の相関係数は オカキである。 ただし, 小数第3位を四捨五入して小数第2位 まで答えよ。 数学 34 32 31 30 23 25 32 38 40 25 (2)男女10人の国語の点数をx, 数学の点数をyとし,x,yの相関係数をrとする。 x, yの散布図として正しいものは ク |,rの範囲として正しいものは ケ である。 ク ケ には,当てはまるものを,下の①~⑥のうちから1つずつ選べ。 -0.9 <r <-0.7 ① -0.5 <r <-0.3 ② 0.3 <r<0.5 0.7 <r < 0.9 ④ 45 ⑤ 45 ⑥ 45 40 35 40 40 8.0 35 0 35 y 30 25 + • 20 y 30 30 25 25 • 20 20 20 25 30 35 40 45 50 x 20 25 30 35 40 45 50 x 20 25 30 35 40 45 50 x 解答 (1) 数学の点数の平均点は (34+32 +31 +30 +23) アイ [30] 基本 14-1 5 よって、 数学の点数の分散は -{(34-30)'+(32-30)'+(31-30)'+(30-30)+(23-30)^} 5 1 70 ウエ (16+4+1+0+49)= = 5 5 国語と数学の点数の共分散は 1/ -{(45-35)(34-30)+(37-35)(32-30)+(39-35)(31-30) +(31-35)(30-30)+(23-35)(23-30)} 132 = ~ ( 40+4+4+0+84) = -=26.4 1に近い 5 5 26.4 26.4 オカキ ゆえに、相関係数は =0.942≒ +0.94 ○ 基本 14-2 √56×√14 28 (2)正しい散布図は’④ 更に、この散布図から, xとyの間には強い正の相関があること が読みとれる。 したがって, rの範囲として正しいものは ○基本 14-3 解法の思考回路 数学の点数の平均値,分 散を求める。 相関係数を求めるために, 国語と数学の点数の共分 散を求める。 散布図の特徴から, 相関 係数の値の範囲を絞りこ む。 データの分析

解決済み 回答数: 1
数学 中学生

大問5:1次関数の問題です。(2)の①の解説に点Qは(0,t+6)になると書いてあります。なぜそうなるのか教えていただきたいです。よろしくお願いします。

によせて考えよ 立てやすくなる。 次関数 きは だから 8 とすると、 Q.1+6) と表せる。 06-1-6 OC-8より、 (+6)×8-414-24 OAと変わる場合と、辺AB と交わる OA上にあるとき、 つまり、 場合に分けて考える。 6のとき、 0 ①より、 SA1+24-30 t= 3 まけ (2)300cm² (1) 図2のya15のとき のグラフの傾きと等し 通る直線を く、 かけばよい。 (2) (1)より おもりの入 っていない水そうでは O 123456789101112131415 12分で満水になるから、1分間に入る水の量は、 30×30×30 ÷12=2250(cm) 0 <新潟県> き,y 高知県 > 県〉 平行な辺をもつ長方 おもりを入れた場合は10分で満水になるので おも 27 長さを求めなさい。 ただし, 原点0から点 (1, 0) までの距 および原点から点 (0, 1)までの距離をそれぞれ1cmと する。 T 教 <千葉県 改 (10点) 右の図のように, 4点0(0,0), A(0, 12), B-8, 12), 0 ) を頂点とする長方形と直線lがあり、直線の C(-8 5. 輝きは 3 である。 次の問いに答えなさい。 せっぺん <福島県> (10点×3) 直線が点C を通るとき,lの切片を求めなさい。 ②辺BCと直線lとの交点をPとし,Pのy座標をtとする。 y A 学 12 国 また,lが辺 OA または辺AB と交わる点を Qとし、∠OQP の面積をSとする。 ①点Qが辺 OA上にあるとき, Sをt の式で表しなさい。 ②S=30 となるtの値をすべて求めなさい。 図1のように、立方体の水そうがあり、その中 6 に直方体の鉄のおもりが入っている。この水そ うに毎分一定の割合で水を入れたところ, 10分後に 満水になった。 水を入れ始めてからx分後の水そう 水の深さをycm とする。 図1の水そうに水を入 30 15 0 4 図2 図 1 れ始めてから満水になるまでのxとyの関係をグラフで表すと図2のようになった。 鉄 もりの高さが15cm, 水そうの1辺の長さが30cmであるとき 次の問いに答えなさい だし。水そうは水平に置き 水そうの厚さは考えないものとする。 鉄のおもりのみ <愛知県> ( 10 これと同じ水そうに空の状態 30

解決済み 回答数: 1
数学 高校生

画像の青線部分なのですが、どうして最後の式に辿り着くのかわかりません

m 5-4 (ii) 思考力・判断力 道しるべ (C) 200- 数が連続するカードの組を含まないような4枚の カードの取り出し方を考える. 取り出した4枚のカードの中に,数が連続するカードの 組が少なくとも1組含まれるような取り出し方は, カード の取り出し方の総数から,数が連続するカードの組を含ま ないような4枚のカードの取り出し方を引いたものであ る. 数が連続する組を含む場合 は, 4枚連続する組を含む, 3枚のみ連続する組を含む, 2枚のみ連続する組を1組だ け含む, ・4枚連続する組は含まれず, 2枚のみ連続する組を 2 組含 そこで,数が連続するカードの組を含まないような4枚のいずれかである。これらの総 のカードの取り出し方を考える。 ~35) 和を直接求めるのは大変である から,その補集合である 「数が 連続するカードの組を含まな い」ような4枚のカードの取り まず, x<y を満たす整数x,yに対して、出し方を考える x <y<y+1 210 であり,xとyが連続する2整数であっても,xとy+1 は連続しない . 同様にして, x<y<z<w (C) を満たす整数x, y, z, w に対して, x<y+1<z+2 <w+3 であり, xとy+ 1, y +1 と z +2, z+2とw+3は連 続しない。 <- (たとえば, よって, 数が連続するカードの組を含まないような4枚}(x,y,z,20)=(1, 2, 9, 10) のとき, のカードの取り出し方は, (x, y+1,z+2,w+3)=(1,3,11,13) となるから、取り出した4枚は, ♡ ♡ 1≦x<y+1<z+2<w+3≦ を満たす整数x, y +1, z+2, w+3 の組 (x, y+1,z+2, w+3) の個数, すなわち、 1≦x<y<z<w≦10 を満たす整数x,y,z, wの組 (x,y,z, w)の個数に等し い。 このような組合せは、1から10までの異なる10個の 整数から4個の整数を取り出して, 小さい順にx,y,z, 01S=(3) wに当てはめればよいから, 取り出し方は, A 3 J K となり,数が連続したカードの 組を含まないOS 10.9.8.7 10C4= 4・3・2・1 =210(通り).

未解決 回答数: 1
数学 高校生

0<x <yよりの説明から分からないです。 詳しく教えてください。 そもそも、なぜこの条件が出てくるのですか? 緑の所です

2 例題 13 | 平方根と式の x= 4 4 のとき、次の式の値を求めよ。 3+√5 3-5 (1)x2+ya (2)x+y3 (3)x5+y5 (1)~(3)はいずれもりの対称式であるから、チャートに従って進めるよ xyの対称式 x+y=(x+y-2.xy 基本対称式x+y, xy で表す CHART x+y=(x+y)"-3xy(x+y) 242 指針 まず, x+y, xyの値を求めることから始める。 指針 x, yの分母を有理化して, それぞれの式に代入してもよいが,もっと簡単な方法があ (1)x2+1 (4) √x-√y 例題 14 x- =2 x x-- この 問題 (4)まず(vyの値を求める。次に,xy の符号について考える。 4 4(3-√5) 解答 x= =3-√5 (3+√√5)(3-√5) 3+√5 3-√5 x+y=(3-√5)+(3+√5)=6 4 4(3+√5) -=3+√5 y=- (3-√5)(3+√5) e> as+18 よって xy=(3-√5)(3+√5)=32-(√5)2=48 aa1-001- (1)x2+y2=(x+y)²-2xy=62-2・4=36-8=288= + (2)x+y=(x+y-3xy(x+y) =6°-3・4・6=216-72=144 (3)x+y=(x2+y2)(x3+y3)-xy-xy2 =(x2+y2)(x+y3)-(x+y)(xy)2- (1) (2) の結果から x5+y5=28.144-6.42-3936- (4) p(vx-y)=x+y-2√xy=6-2√/4=6-4=2 Oxyより√xy であるから √√x-√y<0 したがって 2 かけるをえ否してんす 注意 x, yそれぞれ。 母を有理化せずに x+y を計算しても い。なぜなら 分母か 3+√3-√5で あるため,通分と同時に 母が有理化されるから Jet ある。 しかし (4) の符号を考えるとき それぞれの分母を有 化した方がわかりやす vata, 213. xz 8xt) (3)は,(1),(2)で得られた結果を利用したが、 数学の問題を解くうえで既に得られた用 X

解決済み 回答数: 1