学年

質問の種類

物理 高校生

大問2の方で、r <roより長方形を貫く全電流が0とあるのですが、なぜそうなるのかがわかりません。 教えていただけると助かります。よろしくお願いします。

【1】 <L813P12> 2010 長崎大学 2/25, 前期日程 医 教育工歯 水産業 環境科 次の各問いに答えよ。 試験日 問1 次の (7) から(エ)に適当な式または語句を入れよ。 AO 断面積 S, 長さ 巻き数Nのソレノイドがある。 ソレノイドに電流を流すと内部には, 中 心軸に平行で一様な磁場ができた。 この磁場の強さは,LL, N を用いると, である。 また, ソレノイドの内部の透磁率をμ とすると, ソレノイド内部の磁束密度B は, H, Mo を用 い ( となる。 ソレノイドに流れる電流Iが4時間に AI だけ増加したとすると, ソレノイドのひと巻きあた AI りに生じる誘導起電力の大きさは, S, I, N, を用いて, (ウ となる。 これを倍 N してソレノイド全体で生じる誘導起電力の大きさを表すとき、係数は れる。 導出過程を記入すること。 必要があれば,図を用いてもよい。 とよば 【2】 <L797P22> 2010 東京工業大学 3/12, 後期日程 工 (第2類) 工(第3類) 工(第4 類) 工(第5類) クラス (A) 図1に示すように、導線を半径r[m]の円形状に一様に密にN回巻いた, 長さ入[m]の円筒 形コイルが真空中にある。 なお, コイルの長さは, 半径に比べ十分に長いものとする。 真空の 透磁率を44 [N/A}]として, 以下の問いに答えよ。 番号 中心軸 氏名 得点 70000 00 00 00 00 00 図1 1 T (a) コイルに電流 [A]を流した。 このときのコイルの中心軸上における磁場の強さを [A/ml, コイルの中心軸から距離r[m] における磁場の強さをH,[A/m]とする。 ここで, 磁気量 1WB の 磁極を, 長方形ABCD の矢印の向きに沿って動かすことを考える。 このとき, IWb の磁極が 長方形ABCD 上を一周するあいだに磁気力によってなされた仕事の値[J]は, この長方形を 貫く全電流J[A]に等しいことが知られている。 すなわちW=Jとなる。 なお、図1に示すよう に, 長方形ABCD は,辺の長さが [m] およびr[m] であり、辺ABはコイルの中心軸上にある。 以上のことから,まず, <n, すなわち辺CDがコイルの内側にある場合について考え,H, Hの比を求めよ。 つぎに,,すなわち辺CDがコイルの外側にある場合について考 え, H を入, s, r,N, I のうち必要なものを用いて表せ。 (b) このとき、巻き数Nのコイルを貫く全磁束 [Wb]は, コイルの自己インダクタンス L[田に 比例してLI [Wb] となる。 Lを共 入Nのうち必要なものを用いて表せ。 なお、このコイ ルを貫く全磁束は, コイル一巻き分を貫く磁束のN倍であることに注意せよ。

回答募集中 回答数: 0
数学 中学生

2️⃣で75-50+1と1をたすんですか

活用 この章で学んだ考え方を活用して, 身近な題材の問題を解いてみよう。 ドイツのれんが職人の家に生まれた偉大な数学者カール・フリードリヒ・ガウス (1777年~ 問題 いだい 計算したといわれている。 1855年) は, 小さいころから計算能力に優れ, 1から100までの自然数の和を、次のように |から100までの自然数の和をSとすると S= 1+ 2+ この考え方を用いて, 右のように, 1cm²の正方形を 1段目に1個, 2段目に2個, 3段目に3個, n段目にn個並べた図形の面積を考える。 次の問に答えなさい。 よって, したがって, T= +) S=100+ 99+98++ 2S=101+101+101++101+10+101 段目まで並べた図形について,次の問に答えなさい。 ① この図形の面積を, n を使った式で表しなさい。 1からnまでの自然数の和をTとして, 考えてみよう。> n(n+1) 2 よって, 2S=101 x 100 したがって, S=101×100÷2=5050 (+) U=75+74+73+・ 2U = 80+80+80+ →1からnまでの自然数の和をTとすると T= 1 [ + 2 + 3 +......+(n-2)+(n-1)+ n +) T= n +(n-1)+(n-2)+….....+ 3 + 2 + 1 2T= (n+1) Xn n(n+1) 2 ② この図形の面積が300cm²になるとき, nの値を求めなさい。 ET=300 のとき, これを解くと, n(n+1)=600 n²+n-600=0 (n-24) (n+25)=0 3++ 98+ 99+100 3+ 2+1 2=(n+1)+(n+1)+(n+1)+….....+(n+1)+(n+1)+(n+1) n+1がn個 よって, したがって, U=2840 2U=80×71 101が100個 ....... -=300 8071個 L75-5+1 1段目 2段目 3段目 n=24,n=-25 nは自然数だから、n=-25は問題に適していない。 n=24は問題に適している。 2 5段目から75段目までの面積の和を求めなさい。 5から75までの自然数の和をひとすると, U= 5+ 6+ 7+...... +73+74+75 ..+ 7+ 6+ 5 +80+80+80 n段目 E LE n(n+1) 2 -em n=24 1①を使って 1から75段目までの和から, 1から4段目までの和をひいて求めても いいよ。 2 2840cm 3年 3章 2次方程式 71

未解決 回答数: 1