学年

質問の種類

数学 高校生

赤線の部分どうしてこうなるのかわからないです それと、どうしてsとかtとかおくと解けるのか、何処をみてそういう思考になるのかわからないです

12 N/L 400 基本例 26 交点の位置ベクトル (1) 辺OB を 3:4に内分する点をD, 線分 AD と BCとの交点をPとし, 直線OP| △OAB において, OA=4,OB=とする。 辺OA を 3:2に内分する点をC. と辺ABとの交点をQとする。 次のベクトルをà, を用いて表せ。 (1) OP (2) OQ 指針 (1)線分 AD と線分BC の交点P は AD上にも BC 上にもあると考える。そこで、 AP:PD=s: (1-s), BP:PC=t: (1-1)として, OPを2つのベクトルを 用いて2通りに表すと, p.362 基本事項 5 から 解答 a=06=0, axo (とちが1次独立) のとき pa+qb=p'a+q'b⇒p=p', q=q' (2) 直線 OP と線分 AB の交点 Q は OP 上にも AB 上にもあると考える。 CHART 交点の位置ベクトル 2通りに表し 係数比較 (1) AP:PD=s : (1-s), BP:PC=t: (1-t) とすると OP=(1-s)OA+sOD=(1-s)a+1/27sb, OP=tOČ+(1¬t)OB=³ tã+(1−t)b (1-s)a+ st=1/23ta+(1-t) a = 0, 石ゃxもであるから、1-s=1/31, 4s=1-t 3 よって これを解いて S= したがって (2) AQ: QB=u: (1-u) とすると OQ=(1-u)a+uo また, 点Qは直線 OP 上にあるから OQ=kOP (k は実数) とすると, (1) の結果から 7 13 3 6 OQ=k(vá+³³3b) = 13ká + 1² kb 6 13 これを解いて 10 13 t= 13 よって (1-m) a+w6=1/3+1/3 k= kb a = 0, 0, ax であるから 1-u= 6 13 13 9 U= 1 3 -k, u= 3 13 A ・k [類 早稲田大] 基本 2837,66 4 OP = P の断りは重要。 3 a+1/26 6 13 13 0 の断りは重要。 したがって 00=2434+1/26 0Q=²a b ② 26 AM の交点をPとし, 直線 OP と辺 AB の交点を N とする。 OP, ON をそれぞれ 練習 △OAB において, 辺OA を 2:1に内分する点をL, 辺OBの中点をM, BLと OA と OB を用いて表せ。 [類神戸大] p.414 EX18 IC ズーム UP 10

回答募集中 回答数: 0
数学 高校生

(2)の△OABの面積の出し方について教えてくださいなにかの公式でしょうか?

例題 C1.56 三角形の面積と四面体の高さ 3点A(1, 0, 0), B(0, 2, 0),C(0, 0, 3) とし, 原点Oから平面ABC 上に下ろした垂線の足をHとするとき、 次のものを求めよ。 (1) △ABCの面積S (3) OH の長さ 考え方 (1) S=1/21 ABAC(AB・AC) より求める。 解答 45151 (2)△OAB を底面として、V=1/×(△OAB の面積) OC ( (3)V については, OH をVの高さとし V=1/ Jimm 3 -XSXOH とも表せる.これが(2)の値と等しいことを利用する. (2) DUIHI* OABC OHVB 01 X\ V (4) 四面体OABCの内接球の半径 ₁ S=₂√|AB|²|AC|³—(AB·AĆ)² (3) V= v=×(OAB) ×OC=×1×3=1 v=xSxOH=1××OH-OH 7 32 -XSX よって, (4) V=×(AOBC+AOAC+AOAB fi+\ABC ⁄)×, (1) AB=(-1,2,0), AC = (−1,03) より, |AB| =√5, |AC| =√10, AB AC=1 Chop 6 (2)より、V=1だから OH=1 7 6 1/AB³AC²-(AB-AC)²+) B S =x√5.10-1= A. (2) (OAB)——×OAXOB-X1X2=1 S-AB³AC-AB-AC TO SADA 7. 2 14 (OBCの面積)=1/12 > ×2×3=3 (AOAC)=2×1×3=3/2 - -X1X3= ツ HOW (△OAB の面積) = 1, (△ABCの面積) 3>83 (X) タート * 9₁ V = ²3² ×(3+³² +1+²7)x= より, Xr=3r (2)より,V=1 だから,3r=1 よって **** A 7 2 3-1 (6×5=5.03 OH= [== ASKOPSA A(1, 0, 0) STROKOVEJ L t z k 内接球の中心をIとすると V=IOBC B B A 75 ----- OCLxy ZA (1-0)-0²-² C(0, 0, 3) SS10 A B(0,2,0) 33J+ IOAC + IOAB +DIABC B C C 30mA xD/

解決済み 回答数: 1
数学 高校生

青線は気にしないで欲しいんですけどその右の赤色の式からどうしてs=とt=の答えが出るのかどう計算しても答えてなかったので求め方教えてください😭😭😭💦

基本例題 24 交点の位置ベクトル (1) △OAB において, OA-a, OB 辺OB を 3:4に内分する点をD,線分 AD と BCとの交点をPとし直線 OP と辺ABとの交点をQとする。 次のベクトルをa, ” を用いて表せ。 (1) OP (2) OQ [類 早稲田大〕 指針 (1) 線分 AD と線分BCの交点PはAD上にもBC上にもあると考える。そこで、 AP: PDs : (1-s) BP: PC=t: (1-t) として, OP を2つのベクトル トル コー a. 6 を用いて2通りに表すと, p.384 基本事項 5 から ad. 61.ax (とらが1次独立) のとき pa+qb=p'a+q'bp=p. q-q' (2) 直線 OP と線分ABの交点Qは OP 上にも AB 上にもあると考える。 0000 辺OAを3:2に内分する点をC, とする。 【CHART 交点の位置ベクトル 2通りに表し 係数比較 解答 (1) AP: PD=s: (1-s), BP: PC=t: (1-1) とすると OP=(1-s)OA+sOD=(1-s)a+1/256, よって OP-HOC+(1-t) OB=2/312+(1-1) 6 (1−s)ã+/-sb=³ tà+(1−1)6 0.0.x であるから 1-8-23/34,428-1-1 10 13 よって ********* t= 3 これを解いて s= したがって (2) AQ: QB=u: (1-u) とすると OQ=(1-u)a+ub また、点Qは直線OP 上にあるから, OQkOP (k は実数) とすると, (1) の結果から 13 0Q-k(a+b)-ka+kb 6 (1-u)a+ub-ka+kb = OP= 重要 27. 基本 36.63」 a A 1-t 3 a=0.6=0, a であるから 1-u= u-ik, u-13k これを解いて k-102.u-1/23 したがって DQ-012/241+1/1/27 の断りは重要。 ← 3 a+ -6 13 13 B りは重要 B

回答募集中 回答数: 0
数学 高校生

105.2 記述に問題ないですか?

て求めよ。 後の数の差が せよ。 24148 基本事項 ② される。 下3桁が8の とみなす) Da+b を示す。 ■ +36 6 00m 122 切ると 122 である になる。 tcが 基本例題105 素因数分解に関する問題 63n 40 7 (1) (1) (2) 解答 (1) √Am (m は偶数)の形になれば, 根号をはずすことができるから, 指針 いずれの問題も素因数分解が,問題解決のカギを握る。 √の中の数を素因数分解しておくと、考えやすくなる。 n (2) 14/05 = (mは自然数) とおいて, ,2 n³ 196 " 441 を考える。 JUSCONOTON 練習 ② 105 n² n , 6 196, 63n (1) (3) が有理数となるような最小の自然数nを求めよ。 BSC1638 COMERC V 40 これが有理数となるような最小の自然数nはn=2・5・7=70 n (2) = (m は自然数) とおくと 6 ゆえに 3 n 441 N 53 441 3².7n 2³.5 7 3a+2a+? EKOPACOTCO これが自然数となるのは, が7の倍数のときであるから, m=7k(kは自然数) とおくと n=2.3.7k ① よって用 23.33.73k³ 3².7² -= 2³.3.7k³ ONDOR 3220520 これが自然数となるもので最小のものは, k=1のときである から, ① に k=1 を代入して n=42 n 10 n=2.3m n² 22.32m² 32m² \2 196 (3m)² ² = 2272 500 77n = 1 【検討 素因数分解の一意性 素因数分解については,次の 素因数分解の一意性も重要である。 がすべて自然数となるような最小の自然数nを求めよ。 p.468 基本事項 ③ 3 7n 2 V 2.5 18 nº が自然数となる条件 が有理数となるような最小の自然数nを求めよ。 √54000nが自然数になるような最小の自然数nを求めよ。 3 2 n° 45 00000 000 UT 合成数の素因数分解は,積の順序の違いを除けばただ1通りである。 したがって、整数の問題では、2通りに素因数分解できれば,指数部分の比較によって方程式を 解き進めることができる。 問題 3"15"=405 を満たす整数m,nの値を求めよ。 解答 3.15=3(3・5)"=3"+".5", 405=34・5 であるから 3m +1.5"=34.5 よって m=3, n=1 指数部分を比較してm+n=4,n=1 |素因数分解 3) 63 3) 21 7 63=3².7 63=327,40=23.5 3 7 2 V 2-5 ・×2・5・7 =12/23.7=12/12 (有理数) となる。 HO より, kが最小のとき, nも最小となる。 1645500 03-31801- がすべて自然数となるような最小の自然数n を求めよ。 (p.484 EX74.75

回答募集中 回答数: 0
英語 高校生

この文の第二段落のamid calls for ~のcallsは、名詞でしょうか?前置詞のamidとcalls forのつながりが、なぜこのような訳になるのか理解できません。このcalls が名詞だと仮定して直訳すると、管理下において大規模に火を放つことを求める要求の最中に... 続きを読む

王 jon 【目標解答時間 15分 配点 37点 15 次の英文を読み, 下記の設問 (A~D) に答えなさい。 Fire is "a good servant but a bad master." In my house, in summer, I smell the air for the faintest hint of smoke as keenly as any horse or dog or kangaroo. I watch for columns of smoke, visualising again and again how fire could rush( 1 )the hill towards us. But if you are philosophical about it, fire is a natural 5 part of the Australian environment and has been for millions of years. Living with the threat of fire in the bush, or in the wild, is like living with sharks when diving, or with snakes while walking, or with traffic accidents on a city street. The idea that we should remove every shark from the sea, or every snake from the land, and control- burn, or deliberately set fire, to prevent any risk of 10 bushfires is a recipe for making the environment even worse. As Phil Koperberg, head of the New South Wales Fire Brigades, said ( 2 ) the Sydney bushfires of 1994, amid calls for massive control burning, “Do you want to concrete over all the bush? If you choose to live in the bush, you choose to accept the risk. f It is often claimed that some Austratian plants and animals have actually adapted to fire, evidence of an extraordinarily long period (millions of years before human arrival) during which fire has been more significant in the Australian environment than it has been on any other continent, but this is probably not strictly true. Many plants have adapted to the environment in 20 ways that also happen to be valuable in times of fire. ( 3 ), animals have adapted to a variety of different habitats, and can therefore survive during different periods of vegetation regrowth after a fire (or after, say, a cyclone, a flood, or just a tree falling in a forest). A tree that has the ability to regenerate from roots or lower trunk when the 25 upper tree dies as a result of being broken off in a storm, or falls over, rotten to the core, will also be able to respond when the upper part is killed by a fire. Seeds adapted to long hot droughts, and requiring a combination of heat and water for germination", will also find a fire, if followed by rain, a good stimulus for growing new plants. There does appear to be evidence that chemicals in 30 smoke can help promote growth in plants, but whether this is a direct 可能性があるかを 何度も が続いているのだ。 森林地帯, ダイビングのときにサメ, そやカンガルーにも負けな の匂いを嗅ぐ。 私は,どのよ 暮らすようなものである。 海 しき主人である」( れば, 火事はオーストラリア >> のヘビを取り除くべきだと 意図的に火を放つべきだ , 1994年のシドニー ている真っ只中 と言った。 入れるこ

未解決 回答数: 0