学年

質問の種類

数学 高校生

この、右のページでやっていることが、なぜ成り立つかわかりません

370 340 第9章 整数の性質 不定方程式 y 次のような方程式を考えてみます. -2231x+409y=1 2231x+409y=1 ...... (*) これを満たす実数x、yの組は無数に存在しま す.実際,この式を 1 409 この直線上すべての 点(x,y) が解となる 1 2231 1 y=-- x+· 2231 409 409 -x と変形すると,これはry 平面上の直線となるの で,この直線上のすべての点(x,y) がこの方程式の解となるわけです. 一般に,文字の数が等号の数より多い方程式は解を定めることができません。 このような方程式のことを不定方程式と呼びます.特に,(*)のようにxy の一次式で表されるような不定方程式を一次不定方程式と呼びます. さて,ここで考えたいのは次のことです. 不定方程式 2231x+409y=1 ......(*) は りがともに整数であるような解(整数解)を持つだろうか? これは意外に難しい問題です。 実数の範囲では無数に解を持ったとしても 整数の範囲では解を持つかどうかすらアヤシイのです. 結論から先に言えば (*)の整数解は存在する のです.では,それをどうやって示せばいいのでしょう. 妖怪が存在すること を示す最もストレートな方法は,妖怪を捕まえて連れてくることです. それと 同じで,整数解の存在を示す一番の方法は、 具体的に整数解を作ってみせるこ とです.ここで役立つのが,先ほど扱ったユークリッドの互除法なのです. (*)のxyの係数 2231 と 409 に注目し, これをユークリッドの互除法の 要領で「割り算」 していきましょう. すると, 3段階目で余りに1が現れます. 2231=409×5+186 ......① 409=186×2+37 186=37×5+1 1が現れた! ...... 2 余りに1が現れたということは, 2つの数の最大公約数は 1 つまり2数は 互いに素であるということです. これはとても重要なポイントなので、頭に入 ておいてください 341 ことは,これらの式を逆にたどるよ にして1を元の2数を用いて表す」 ことです。 具体的には,次のような作 になります。 ⑦→ ④→ ← 1=186-37 × 5 ③ より =409×(-5)+186 × 11 186-409-186×2)×5②より37=409-186×2 =409×(-5)+(2231-409×5)×11-0) =2231×11+409 × (-60) - 186-231-409×5 まず、③により1が 「186と37」 を用いて表され(ア), そこに②を使うと 「409 と 186」 を用いて表され(イ), さらに①を使うと1が 「2231409 」 を用いて表されます(ウ) ウの式は,まさに(*)の整数解 (の1つ)が であることを教えてくれます。 x=11,y=-60 さて、先ほど注意したように,このようなことができたのは, そもそも の係数 2231 409 の最大公約数が 1 つまり互いに素であったからです。 つまり、一般に次のことが成り立つことがわかるのです. 不定方程式の整数解 bが互いに素な整数であるとき 1次不定方程式 ax+by=1 は整数解を持つ ユークリッドの互除法を用いれば, 一次不定方程式の整数解を具体的に作り 出すことができます.ただし,このやり方で見つかる整数解は、あくまで不定 方程式の整数解 「の1つ」であり,それがすべての解であるわけでも、あるい は最もシンプルな解であるわけでもないことには注意してください。 当然次なる興味は,1次不定方程式の「すべての整数解」を求めることは きないかということになります.この「すべての整数解」のことを次 定方程式の一般解といいます。その求め方は後ほど詳しく説明しますが、実 「すべての」 整数解を求めるためには, 少なくとも「1つの」 整数解を自 求めなければなりません.そこで,まずは先ほどの作業で「1つの」整数 求める練習をしっかりとしておきましょう。

回答募集中 回答数: 0
理科 中学生

(3)(4)の解き方を教えていただきたいです。

【問3】 各問いに答えなさい。 ス(方位磁針)がないと方角がわからなくなってしまうと不安に思い、お父さんに聞いてみた。 次の会話はそ あすかさんは、秋分の日にお父さんと登山に行くために天気図を見ている。 準備をしていたところ、コンパ このときのものである。 あすか:お父さん、図1の天気図を見ると、私たちが登る山の●印の地 図 1 あ 明日の天気は、 みたいね。 登山にはコンパス (方位磁針)を持って行くのだけれど、コンパスがなくても方角 を知る方法はあるのかな。 低 父 :お父さんの時計は登山用のデジタル時計だから、コンパスがな くても方角がわかる機能がついているけど、あすかの持って行 くアナログ時計でも、 およその方角がわかる方法があるよ。 そ の方法では、南の方角を知ることができるんだよ。 あすか : 本当に南の方角がわかるの? どうすればよいのかしら。 低 父 図2のように、まずアナログ時計の短針を太陽の方向に合わせ るんだ。 その短針の方角と時計の文字盤の12時の方向の真ん中 がおよその南の方角になるよ。 あすか 難しくて、よくわからないな。 登山の前日の18時の天気図 図2 南 父 :ちょうど12時の正午の場合で考えてごらん。 図3のように、時 計の短針は12時を指していて、長針も12時を指しているから、 短針と長針の真ん中も12時の方向になる。 南の方角も12時の方 向に来るから、太陽が南中していることもわかる。 太陽 図3 あすか:なるほど。正午の2時間後の14時 (午後2時)では、短針は太 陽の方向を指しているから、太陽は正午よりもい時計の文 字盤上を時計回りに進んだ方向にある。 そうすると、南の方角 は時計の文字盤上のう時の方角になるということだね。どう してこうなるのかしら。 父:太陽が1時間に移動する日周運動が、 え だ 20 からだね。 9 あすか : わかったわ、 ありがとう。 実際に山で試してコンパスの方角とく らべてみるね。 85 10 11 12 9 2 8 3 5. 太陽 南

回答募集中 回答数: 0
物理 高校生

1番の問題で写真のような解き方をしてはいけないのはなぜですか?はやめに教えてくれると有難いです🙏🏻

基本例題 40 万有引力による位置エネルギー 203,204 解説動画 地球の表面から速さで鉛直上方に物体を発射したとき, 到達する最大の 高さんを考える。 地球の半径をR, 地球上での重力加速度の大きさをg とする。 (1) 万有引力による位置エネルギーを考え, vo をg, R, hで表せ。 Vo (2)がRに比べて十分に小さいときはどのように表されるか。 iR (3)v を大きくすると, 物体は地球上にもどらなくなる。 このとき, ではいくら以上にすればよいか。 g, R で表せ。 指針 万有引力定数G, 地球の質量Mが問題文に与えられていないので, 「GM=gR2」を用いて g, Rで表す。 解答 (1) 物体の質量をmとする。 力学的エネルギー保存則より 2+ 2 mv²+(-GMm)=0+(-G Mm R RIT) (G: 万有引力定数,M: 地球の質量) 12/3m mvoz = = GMm GMm GMm R R+h R GMm R+h-R GMm h = 1 = = R R+h R R+h R R+h ここでGM=gR2 より 12mv=gR2.m h 2gRh よって No = R R+h R+h (2)んがRに比べて十分に小さいとき, 720 より (3) 地球上にもどらないようにするには,んが無限遠であればよい。 2gRh 2gh ≒0 vo=v R+h = ≒√2gh h 1+. R このとき, A = 0 より R h 2gRh 2gR Vo= = VR+h ≒√2gR R +1 h

回答募集中 回答数: 0