学年

質問の種類

公民 中学生

急ぎです!!!!! 四角2の問題で(ア)〜(ハ)に入る語句は何になるでしょうか?考えてもあまり分かりませんでした。 (ア)〜(ハ)に入る語句は四角1の語句のどれかが入ります その語句たちを入れて教えてください!!

基礎基本のまとめ 第5章の学習をふり返ろう けいさい。 次の①からの語句は、この章で学習した用語です。 どのような意味の用語か, 自分の言葉でそれぞれ説明しましょ う。 うまく説明できない場合は, 掲載されているページにもどって確認しましょう。 p.182 p.182 p.182 「かくにん p.183 p.183 ①主権国家□ 2領域(領土・領海・領空) □ 3排他的経済水域 4国際法□ 国際協調□ p.186 p.184 185 p.187 p.189 竹島尖閣諸島北方領土口 国際連合□ 8総会□ 安全保障理事会□ ⑩専門機関□ 1拒否権 平和維持活動 (PKO) 13持続可能な開発目標(SDGs) 1地域主義 1 ヨーロッパ連合(EU) ⑩ 東南アジア諸国連合(ASEAN) 17 アジア太平洋経済協力会議 (APEC) ⑩ 南北問題 南南問題 p.186 p.186 p.186 p.187 p.187 p.188 p.188 p.189 p.190 191 p.192 p.193 p.194 p.195 p.198 19国連環境開発会議(地球サミット) 20京都議定書□ 21 化石燃料 2 再生可能エネルギー□ 23 貧困 [ p.199 p.199 p.200 p.200 p.201 24 フェアトレード 45 マイクロクレジット□ 地域紛争 テロリズム□ 28核拡散防止条約 p.202 p.204 p.206 29 難民□ 30政府開発援助(ODA) □ 31 多様性 p.207 人間の安全保障 くうらん 2 この章の学習内容をまとめた, 次の図の空欄に入る語句をの語句からそれぞれ一つずつ選びましょう。 さまざまな国際問題 はかい さぼく 地球環境問題 地球温暖化, オゾン層の破壊、 砂漠化など 資源・エネルギー問題: 有限な(ア), (イ)の導入 の広がり 55 (ウ) 問題: 飢餓, 水不足, 教育機会の不足など ・新しい戦争:(エ), (オ)など (カ) 問題:(エ), (オ)が起こることなどで 発生 国際関係を複雑にする要因: (キ)などの格差 (ク) 国民, (ケ), 主権から成る A国 (先進国) B 国 とじょう (途上国) (セ) いじ 日本 「外交関係 世界の平和と安全の維持が目的 (先進国) C国 (新興国) . (ソ) (夕)(チ)などの 機関で構成 (コ) . (タ) (ツ)を持つ常任理事国 と非常任理事国で構成 D 国 (サ), (シ), (途上国) (ス), アフリカ連合(AU)など 解決のための取り組み (テ)や(ト)などの, 地球環境問題解決のための 国際会議や取り決め えんじょ (ナ): 先進国による途上国への援助 (二)の尊重と異文化理解 ・(ヌ)や(ネ)などの途上国の人々の自立を助ける 取り組み ・(ノ)などの軍縮の取り組み 領土をめぐる問題の解決: (ハ)など

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

なぜ積分したらこの形になるんですか?これだと、マイナスで括れば元の形に戻ると思うんですが、、青の部分はこうなるのではないのですか??違いがわからないです

150 絶対値記号のついた定積分の代謝会 次の定積分を求めよ. (1) S√ √x-3dx (2) Clsin2xldx 3定積分 329 **** 考え方 絶対値記号をはずす. そのとき, xの値の範囲により、積分区間を分ける. 絶対値記 号をはずすポイントは、記号の中の式を0以下と0以上で場合分けすることである. √x+3(x3)←x-3≦0 (0以下) (1)√x-3 √x-3 (x≧3) ←x-30 (0以上) Solx-3ldx=S-x+3dx+x-3dx であるから, (2)0≦x≦ より 0≦2x≦2 sin 2x TC 10≦x≦ ← 0≤2x≤ したがって, |sin2x|= 200 (0以上) sin 2x (SIS) π 2 ← 2 2 (0以下) 「解答 (1) (2) つまり、Solsin2x|dx= sinxdx+S(sin2x)dxS'=S+S Svlx-3ldx=S-x+3dx+Svx-3dx =[2/3(x+33 + [1/(x-3)2 3 + ·32 376 ||-3|= x+3(x≦3) lx-3 (x≥3) YA y=√x-31 √3 y=vx3 第5章 0 3 y=v-x+3 |sin2x|= sin2x (0≤x≤7) -sin 2x(SIS) y=|sin2x| =4√3 π Sisin2x|dx= sin2xdx+S =S sin2xdx + S (- sin2x)dx Jogt =[12/cos2x]+[/2/cos == =-1/12 (1-1)+1/2(11) 2x ya 1=2 Focus 積分区間を分けて、絶対値記号をはずせ (記号の中の式を0以下と0以上で場合分け) a) 0 π TX 2 y=sin2xy=-sin 2x グラフはx軸で折り返した グラフを利用しよう.

未解決 回答数: 1
数学 高校生

この問題、アイはなんで2枚目のように解いたらダメなんですか?🙇‍♂️ 解答みたらめっちゃ簡単だったんですけど、2枚目のように確率ぶんの確率みたいに解く時も無かったですっけ?その違いはなんですか?🙇‍♂️

第5章 場合の数と確率 95 基本 例題 39 条件付き確率 男子58人, 女子42人の生徒100人に数学が好きか嫌いかを聞いたところ, 好き と答えた生徒は40人で,そのうち男子は28人であった。また, 好きでも嫌いで もないという回答はなかった。 この100人の中から1人選ぶとする。 選ばれた1人が女子のとき, その生徒が 数学が好きである確率は ア イ である。 また, 選ばれた1人が数学が嫌いであ るとき,その生徒が男子である確率は ウ である。 I POINT! PA(B)= = n(A) 事象A が起こったときの事象Bが起こる条件付き確率P (B) は n(A∩B)_P(A∩B) B B at P(A) A n(ANB) n(ANB) n(A) A が起こるという前提のもとで,Bが起こる An (A∩B) (A∩B)n(A) 確率・・ 右の表の n(ANB) n(A) の値。 計n(B) n(B) n(U) (Uは全事象) 解答 選ばれた1人が女子であるという事象を W, 数学 素早く が好きであるという事象をAとすると n (W)=42, n (WA)=40-28=12 解く! 表を利用。 よって、求める確率はP(A)=nWNA)_12_72 n(W) 42 イク 選ばれた1人が数学が嫌いであるという事象をB, 男子で あるという事象をMとすると 好嫌計 男子 283058 女子 1230 42 計4060 100 = ◆ 「女子の中で数学が好きであ る人数 ②好 の割合」 男子 28 30 58 女子 1230 42 n(B)=100-40=60,n (B∩M)=58-28=30 計4060 100 よって、求める確率はP(M)= n (B∩M)_30_1 = n(B) 60 2 「数学が嫌いである人の中で 男子の人 ③好 数の割合」 男子 283058 女子 1230 42 計40 60 100

未解決 回答数: 1