学年

質問の種類

数学 中学生

解説お願いします

2 下の図のように、箱Aと箱Bがある。 箱Aには1,2,3の数字が1つずつ書かれた3枚のカー ドが入っている。 箱Bには1,2,3,4,5,6の数字が1つずつ書かれた6枚のカードが入っ ている。それぞれの箱から1枚ずつカードを取り出す。 そして, 箱Aから取り出したカードに書か れた数字を十の位の数, 箱Bから取り出したカードに書かれた数字を一の位の数として,2けたの 自然数をつくる。 次の(1)~(3)に答えなさい。 ただし, 箱Aからどのカードが取り出されることも 箱Bからどのカードが取り出されることも,それぞれ同様に確からしいものとする。 1 2 3 1 2 3 4 5 6 箱A (1)つくった2けたの自然数が素数となる確率を求めなさい。 箱B (2) 2けたの自然数が4の倍数となる場合と5の倍数となる場合では, どちらが起こり やすいか。 それぞれの確率を求めて説明しなさい。 初学 (3) あみさんは、箱Aに4と5の数字が1つずつ書かれたカードを1枚ずつ、箱Bに0の数字が1 つ書かれたカードを2枚追加し,それぞれの箱から1枚ずつカードを取り出した。 箱Aから取り出したカードに書かれた数字を十の位の数, 箱Bから取り出したカードに書かれ た数字を一の位の数として, 2けたの自然数をつくったとき,この数が3の倍数となる確率を求 めなさい。 08- 08 08~ ROB

回答募集中 回答数: 0
数学 高校生

(2)を解答とは違う、垂直条件を二回使って連立方程式を作る解き方をしましたが、2枚目の右下のbの値が違います。どこで間違えたのでしょうか。 何回も見直しましたが、どこで間違えているかわかりませんでした…

• 10 外心 三角形ABCの3辺の長さをAB=4, BC=3, CA=2 とする.この三角形の外心を0とおく. (1) ベクトル CA と CB の内積 CA・CB を求めよ. (2) CO=aCA + 6CB をみたす実数 α, b を求めよ. 外心の求め方 外心の定義 (OA=OB=OC) を用いて求めてみよう. 例題では|OA|=|OB2=|OC|2 を CA, CB, a, b で表して a, b を求め ればよいのであるが,素直にOA=CA-CO=(1-4) CA-6CBとして 計算すると式が膨れてしまう. (信州大・理一後) |OA|=|CA-CO|=|CA|2-2CA・CO4 | CO 2 としておくことがポ イントで,これがCO2に等しいことから2CA・CO-|CA | となる。 これに CO=aCA+bCB を代入する(aとbの関係式が得られる)。 0 B 同様に|OB|=|OCからもαとの関係式が得られ,この連立方程式を解けばよい. 解答 (1)|CA-CB|=|BA|2であるから, |CA2-2CA・CB+|CB|=|BA|2 ..22-2CA・CB+32=42 CA·CB= 22+32-42 2 3 == 2 e CA ACT=0 A (2) 0から A, B, Cまでの距離が等しいので, |OA|=|OB|=|OC|2 ..|CA-CO|=|CB-CO|=|CO|2 .. |CAP-2CA・CO+|CO|=|CB|2-2CB・CO+|CO|=|CO|2 最左辺 =最右辺, 中辺=最右辺より, 2CA·CO=|CA|2, 2CB・CO=|CB|2 これらにCO=CA+6CB を代入すると, 2(a|CA2+6CA•CB)=|CA|2, 2 (aCA•CB+6|CB|2)=|CB |2 (1)で求めた値などを代入して, 3 2{a·4+6 (-2)}-4, 2{a⋅(-1)+6-9)=9 ∴.8a-3b=4 .......... ①, -3a+186=9 ②÷3よりa=66-3...... ③ で,これを①に代入すると 8(66-3)-3b=4 28 .. 45b=28 .. b = 45 28 11 これを③に代入して, α=6· -3= 45 15 COR=0 C. (c) 問題文の CA, CB を見て,Cを 始点に書き直す。 =0 CA (CA - PCA + CD) - CAP) CA +&CB=0 この式は次のようにして導くこ ともできる. 2 A 0 CACO=CA・CO・cos/Cである. 0 から CAに下ろした垂線の足を Hとすると,HはCAの中点で Cocos ∠C=CH=CA/2 よって, CA·CO=CA·CH=CA2/2 CB・COも同様. 10 演習題(解答は p.27 ) △ABC において AB = 1, AC=2と1 /BAC=

回答募集中 回答数: 0
数学 中学生

全く分かりません💦教えてください

2 次の問いに答えなさい。 (1) 2けたの自然数があり、 各位の数の和は14である。 また, この自然数の十の位の数と一の位の 数を入れかえてできる自然数は,もとの自然数より36大きい。 もとの2けたの自然数を求めなさ い。ただし,もとの2けたの自然数の十の位の数を、一の位の数を」として連立方程式をつく り、途中の計算も書くこと。 (2)1から6までの番号のついた, 片方の面が白, もう片 方の面が黒の6枚のカードがあり, はじめは,白の面を 上にして, 1番から順に左から並べておく。 さいころを 続けて2回投げ, 1回ごとに, 出た目の数と同じ番号の カードと, それより右にあるすべてのカードを裏返す。 ただし, 6の目が出たときは, 6番のカードのみ裏返す ものとする。 たとえば, 1回目に出た目の数が4, 2 回目に出た目の 数が2のとき、1回目で4,5,6番のカードを裏返し, 2回目で 2, 3, 4, 5, 6番のカードを裏返すから,さい ころを2回投げた結果, 黒の面が上になっているカード • 1 2 3 4 5 6 1回目 1 2 3 4 5 6 2回目 1 2 3 456 は、右の図のように, 2番と3番の2枚になる。 次の問いに答えなさい。 ① 1回目に出た目の数が3, 2回目に出た目の数が6のとき, 黒の面が上になっているカードの 枚数を求めなさい。 ② さいころを2回投げた結果, 6枚とも白の面が上になっている確率を求めなさい。 さいころを2回投げた結果, 5番のカードの黒の面が上になっている確率を求めなさい。

回答募集中 回答数: 0
数学 高校生

この問題答え見てもよくわかりません

精講 133 計算の工夫 次のデータは5人のハンドボール投げの記録である。 28,α,24,b,c (単位はm)+01+819~ このデータでは、次の4つの性質が成りたっている. (ア) 24 <a<28<b<c (イ) 第3四分位数は33m (ウ) 平均値は 29m (エ) 分散は 14 このとき, a, b, c の値を求めよ. 文字が3つありますので,第3四分位数, 平均値,分散の定義に従 って等式を3つつくり、連立方程式を解けばよいだけですが,数値 が大きいので,計算まちがいが心配です. そこで,平均値がわかっているので,すべてのデータから平均値 29m を引 いた新しいデータを考えることで,計算量を減らす工夫を学びます。 解答 与えられたデータから29m をひいた数を 新しいデータとして考える. すなわち, 小さい順に, -5, a-29, -1, 6-29, c-29 を考える. α'=a-29,b'=b-29, c′'=c-29 とおく . (イ)より, b+c=33 だから,b+c=66 2 : b'+c'=8. ...... (ウ)より,24+α+28+b+c=29・5 ∴a+b+c=29・5-52 よって, a'+B'+c'+29・3=29・5-52 a'+b'+c′=29・2-52 ③) 26-166'+64-40=0 '-86'+12=0 (b'-2)(b'-6)=0 6'2 または 6 6'=2のとき,c=6 B'=6 のとき, c'=2であるが, =44 bc より, B' <c' だから,このときは不適. よって, '=2,'=6 以上のことより, a=27,6=31,c=35 注もし、元のデータのまま解答をつくると、 でき上がる 6+c=66,a+b+c=93, (a-29)2+(6-29)^2+(c-29)²= この時点で, a'=a-29,6'=6-29, c'=c-29 とおきた せん. 演習問題 133 視力検査の数値のように,小数点以下を含むデー 仕方は, 137で学びます. G 次のデータは5人の体重測定の結果である 57,64, a,b,c (単位はkg) このデータに対して、次の4つの性質が (ア) 57 <a<b<64 <c (イ) データの範囲は 10kg (ウ) データの平均値は 62kg (エ) 11.6

回答募集中 回答数: 0
数学 高校生

1と2でcが異なるのがよくわかりません。 どうやって考えればいいんですか?

○○ 基本 71 日本例題 を求めよ。 の共有点と連立1次方程式の解 立方程式 ax+3y-1=0, 3x-2y+c=0 が,次のようになるための条件 ただ1組の解をもつ 00000 (2) 解をもたない (3) 無数の解をもつ p.121 基本事項 GHART & SOLUTION 2直線が 川 1点で交わる 2直線A, B の共有点の座標 ⇔ (共有点は1つ) 連立方程式が 連立方程式 A, B の解 125 が一致 よい。 [2] 平行で一致しない (共有点はない) ⇔ ⇔ [3] 一致する(共有点は直線上の点全体) 答 ax+3y-1=0 から 3x-2y+c=0 から y=-- a 1 x+ 3 3 y=1/2x+1/2 1組の解をもつ 解をもたない 無数の解をもつ (1) 連立方程式 ① ② がただ1組の解をもつための条件は, 2直線 ①② が1点で交わる, すなわち平行でないことで a 3 が -1 ある。 0 よって 3 2 9 ゆえに a- 2 cは任意の実数 (2)連立方程式 ①,②が解をもたないための条件は, 2直線 ① ②が平行で一致しないことである。 inf 2直線 ax+by+c=0, azx+bzy+cz=0 が | 平行であるための条件は ab-ab=0 3章 11 である(p.120基本事項3) から (1) は b2-azb≠0 より求めてもよい。 なお, a2=0,620, 20 のとき 2直線が 一致するための条件は a_bicy a2 b₂ C2 直線 である。 (3)は、この式から 求めてもよい。 0 よって a = 3 1 C ・キ 3 2'3 2 9 ゆえに a= 2 3

回答募集中 回答数: 0