学年

質問の種類

数学 高校生

数2 微分 なぜ答えのようになるのかわかりません。 Bはゼロに近づくから、0になるのではないのですか?教えてくださると嬉しいです🙇

324 基本例題 202 変化率 00000 (1)地上から真上に初速度 49m/s で投げ上げられた物体のt秒後の高さんは h=49t-4.9f(m) で与えられる。この運動について次のものを求め、 し, vm/sは秒速vm を意味する。 (ア) 1秒後から2秒後までの平均の速さ (2) (0)-3 めよ。 (イ)2秒後の瞬間の速さ とき,球の体積の5秒後における変化率を求めよ。 ふたた P.314 基本事項 指針 (1)高さんは時刻tの関数と考えることができる。 h=f(t)=49t-4.9t2 とする。 (ア) 平均の速さとは,平均変化率と同じこと。(んの変化量)÷(tの変化量)を断 算。 (イ) 2秒後の瞬間の速さを求めるには, 2秒後から2+6秒後までの平均の速さ 均変化率) を求め, 60のときの極限値を求めればよい。 つまり、微分係 f' (2) が t=2における瞬間の速さである。 (2) まず, 体積Vを時刻tの関数で表す。 これをV=f(t) とすると, 5秒後の変化率 は t=5 における微分係数 f' (5) である。 重要 例足 xの多項 る。 (1) f(x) (2) f(x 指針 ( ( 解答(1 (1) (ア) (49.2-4.9・22)(49・1-4.9・12) 2-1 =34.3(m/s) tがαから6まで変化す 解答 (イ) t秒後の瞬間の速さは,んの時刻 t に対する変化率 るときの関数f(t)の平 均変化率は f(b)-f(a) 7D dh b-a である。 んをt で微分すると =49-9.8t dh dt については、下の (1)=4 dt 求める瞬間の速さは, t=2として 49-9.8・2=29.4(m/s)=p 注意 参照。 '=49-9.8t と書いてもよいが、 (2) t秒後の球の半径は (10+t) cm である。 dt t秒後の球の体積を V cm とするとV=1(10+t V を tで微分して 求める変化率は,t=5として 4л(10+5)=900π (cm³/s) と書くと関数を 微分していることが式か ら伝わる。 =n(ax+b)"'(ax+b) 変数がx,y以外の文字で表されている場合にも, 導関数は今までと同様に取り扱う。例え (1+(1) 4 d=1/2x3(10+t) 2.1=4z (10+t) { (ax+b)"} ば、関数=f(t) の導関数はf(t), dh dt' dt df(1) などで表す。また,この導関数を求め ることを、変数を明示してん を tで微分するということがある。 練習 (1) 地上から真上に初速度 29.4m/s で投げ上げられた物体のt秒後の高さんは、 で与えられる。この運動に ④20

回答募集中 回答数: 0
数学 高校生

数2 微分 なぜ答えのようになるのかわかりません。 Bはゼロに近づくから、0になるのではないのですか?教えてくださると嬉しいです🙇

324 基本 例題 202 変化率 00000 (1)地上から真上に初速度 49m/s で投げ上げられた物体のt秒後の高さんは h=191-4.9P(m)で与えられる。この運動について次のものを求めよ し, vm/sは秒速vm を意味する。 (ア) 1秒後から2秒後までの平均の速さ (2) 10 cm (イ)2秒後の瞬間の速さ とき,球の体積の5秒後における変化率を求めよ。 ただ p. 314 基本 指針 (1)高さんは時刻tの関数と考えることができる。 h=f(t)=49t-4.9t2 とする。 (ア) 平均の速さとは,平均変化率と同じこと。 (んの変化量) (tの変化量) を計 算。 (イ)2秒後の瞬間の速さを求めるには 2秒後から2+6秒後までの平均の速さ 均変化率)を求め, 6 → 0 のときの極限値を求めればよい。 つまり、微分係数 f'(2) が t=2 における瞬間の速さである。 (2) まず, 体積Vを時刻tの関数で表す。 これをV=f(t) とすると, 5秒後の変化率 t=5 における微分係数 f' (5) である。 taから6まで変化す (1) (ア) (49.2-4.9.22)(49・1-4.9.12) 2-1 =34.3(m/s) 解答 (イ) t秒後の瞬間の速さはんの時刻 t に対する変化率 るときの関数f(t)の平 変化率は f(b)-fla dh b-a である。 hをtで微分すると =49-9.8t dh dt については,下の dt (1)-9 求める瞬間の速さは, t=2として 注意 参照。 '=49-9.8t 49-9.8・2=29.4(m/s)=p (2) t秒後の球の半径は (10+t) cm である。 と書いてもよいが, 3 t秒後の球の体積をVcm とするとV=1(10+t dV 4 V を tで微分して dt dv=7.3 ・3(10+t)2・1=4z(10+t) 求める変化率は,t=5として 4(10+5)=900(cm²/s) と書くと関数を 微分していることが式か ら伝わる。 { (ax+b)"}' =n(ax+b)"' (ax+b) 変数が x,y以外の文字で表されている場合にも, 導関数は今までと同様に取り扱う。例え dh d ば、関数=f(t) の導関数はf(t), dt' dt f(t) などで表す。また,この導関数を求め ることを,変数を明示してh を tで微分するということがある。

回答募集中 回答数: 0
物理 高校生

問5の導出というのは、実際に左辺にX1とT1を代入してv0になる計算過程を書けばいいんですか? それか、答えのようにcos=とtan=を出して1+tan^2=のやつに代入した方がいいんですか? X1とT1とtanθはそれぞれ分かってる状態です。

道)とし, 小球の大きさや空気抵抗は無視できるとする。 重力加速度の大きさをg とする。 y Vo m 図1 (1) 小球が地面に落下するまでの運動を考える。 問1 時刻t における小球の位置のx座標とy座標をt, vo, 0,g を用いて表せ。 問2 小球の最高点のy座標Y」 を, 0, 0, g を用いて表せ。 問3 小球が投射されてから地面に落下するまでの時間 T を, vo, 0,g を用いて表せ。 問4 小球が地面に落下したときのx座標 X」 を, vo, 0, g を用いて表せ。 x (2) 小球が投射された瞬間の速さひ と投射角を精密に測定するためには, 高精度の機器が なければ難しい。 しかし, 小球が投射されてから地面に落下するまでの時間 T とその水平 距離 X, は,容易に測定することができる。 そこでvo と 0 を, X1 と T で表すことを考えよ T₁² う。まず を計算すると, tan 0 が g, X1, T を用いて X1 tan 0 = ア と表せる。 ①式を使うと, voもg, X1, T1 を用いて次の②式のように表せる。 X₁² g²T² + Vo = VT2 4 2 問5 ② 式を導出せよ。 次に,ひと0の値を調節して, 座標位置x = L, y = 0 (Lは正の定数)に小球を落下さ せるための条件を調べよう。 ②式で X = L とおけば, vo は T のみで定まる。

回答募集中 回答数: 0
理科 中学生

(3)の問題が分かりません。解説には「台車は,50cm から70cmの20cmの距離を、 1.87-1.58=0.29 s で下っている。60cmのところでの瞬間の速さは,50cm から70cmの距離を移動する平均の速さにほぼ等しいので,20cm゠ 0.29 s=689... 続きを読む

【斜面を下る運動】 しゃめん 2 図1のように、 なめらかな斜面を下る台車の 図1 運動を調べた。 台車の下る距離を少しずつ変 えて かかった時間を測定したところ、 右の 表や図2のようなグラフが得られた。 これに ついて、次の問いに答えなさい。 (1) 台車が下り始めてから1.5秒間に下る距 離は何cmか。 ( 45cm ] (2) 台車が出発点から30cm下る間の、台車 の平均の速さは何cm/sか。 小数第1位を 四捨五入して整数で答えよ。 ex Toy 出発点 距離 時間 [cm〕 〔s〕 0 10 0.71 20 1.00 30 1.22 40 1.41 50 1.58 60 1.73 70 1.87 一台車 0 図280 距60 距離〔C〕 イ 35cm/sウ 46cm/s エ69cm/s 40 20 [25cm/5] しゅんかん (3) 台車が出発点から60cm 下ったときの, 台車の瞬間の速さは,次のア~エのどれに 最も近いか。 1つ選び, 記号で答えよ。 ア 28cm/sイ 35cm/s (イ) 斜面 00 0.5 1.0 1.5 20 時間 [s] 入試レベル 【物体の運 右の図 1 また,図 を示した ミス注意 (1) 物体 すを示 5 (2)図 たらし 選び, (3), らアイウ ら1 9 (1) 1.5N (3) 変化した 解説 (2) 物体

未解決 回答数: 1