学年

質問の種類

物理 高校生

有効数字で質問なんですけど2.0×150の答えってどうなりますか?掛け算の場合最も桁数の少ない数字に合わせるとあるので3桁の数字をどうしたら良いかわからなくて、お願いします!

① 測定値の計算と有効数字 日本の た。こうして得た数字の 3, 5, ゆ た意味のある数字なので、これらを 有効数字 けたすう たこの例で,「有効数字の桁数は3桁である」という。有 せいみつ 効数字の桁数の多いものほど、精密に測定したことになる。 いまこの質量357g をkg の単位で表すと 0.357kg となる。 このとき, 0.357kg くらい 0位どりの0 なので、 有効数字の桁数には数えない。 したがって, 357gも0.357kg もどちらも有効数字は3桁である。 p.280 な重 がある。 5 太陽と 測定値には必ず誤差が含まれる。 測定値どうしの計算では, 有効数字を適切に扱 10 うために,次のような点を考慮しなければならない。 ■かけ算、わり算 しゃごにゅう 桁数 (四捨五入した後) とする。 測定値どうしをかけたりわったりするときは,通常, 最も少ない有効数字の 10 約 1 電子の 約 しかし ときに の0を ■指数 15 例えば 15 :縦 26.8cm, 横 3.2cmの長方形の面積 26.8cm×3.2cm=85.76cm² 答え 86cm² 3桁 2桁 2桁 (1) であ ■足し算、引き算 五入によって測定値の末位が最も高い位のものに合わせる。 た 例:21.58cm の棒と8.6cm の棒を継ぎ足した長さ 21.58cm + 8.6cm = 30.18cm 小数第2位 小数第 ■整数や無理数の扱い 整数や無理数は測定値ではな 答え 30.2cm 小数第1位 測定値どうしを足したり引いたりするときには,通常, 計算した結果を四捨 1 20 負の 20 NJ 10 25

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

文章題なのですが、解説の青線部分がよくわかりません…т тどなたかどのような意味が教えて頂けないでしょうか…!

市役所上・中級 No. 9/21 B日程 判断推理数量関係 237 判断推理 30年度 「ある店で、りんご150円, なし120円, オレンジ100円で販売している。 AとBの購入について ことがわかっているといえるのはどれか。 Aは1310円分,Bは850円分買った。 AとBの買ったなしの個数の差は2個であった。 ・Aの購入個数はオレンジよりりんごのほうが多かった。 1 Aはりんごを5個買った。 2Bは全部で11個買った。 3Bはオレンジとりんごのみを買った。 4 Bはオレンジを最も多く買った。 5 AとBでオレンジを5個買った。 解説 1つ目の条件より,Aの合計で十の位の10円より, 10円を作ることができる「なし」を何個買 ったかを考える。10円を作るには,十の位を1か6にしなければいけないが,「なし」の十の 位である2で,奇数である1は作れないので,十の位を6にする必要がある。このことより, Aは「なし」を3個,8個, 13個, 16個…………となるが, 13個以上買うと 「なし」だけで1310円 を超えてしまうので, 3個か8個となる。 人の 同様にBの十の位が5なので, Bは 「なし」 を0個, 5個 10個…となるが,10個以上買う と「なし」だけで850円を超えてしまうので, 0個か5個となる。 2つ目の条件より、 「なし」の個数の差が2個なので,Aが3個,Bが5個と確定する。 B は残り850-120×5=250円分となるので,りんご1個, オレンジ1個と決まる。 数学 物理 化学 生物 地学 文章理解 判断推理 なし(120円) りんご (150円) A 3個 (360円) オレンジ (100円) 950円 合計 1310円 B 5個 (600円) 1個(150円) 1個(100円) 850円 Aは残りは950円となる。この50円を作るにはりんごを奇数個買ったことになる。りんごと オレンジの個数の可能性は以下のようになる。 りんご 1個 3個 5個 オレンジ 8個 5個 2個 しかし、3つ目の条件より, りんごのほうを多く買っているので,りんごが5個, オレンジ が2個と確定する。 以上より,正答は1である。 正答 1 推

回答募集中 回答数: 0
英語 高校生

式と曲線の問題なのですが黄色マーカーで引いた部分の説明がわからないです。教えて頂けると嬉しいです。

練習 曲線(x2+y2)3=4x2y2 の極方程式を求めよ。また,この曲線の概形をかけ。ただし,原点O を 179 極, x軸の正の部分を始線とする。 x=rcose,y=rsin0, x2+y2=2を方程式に代入すると よって ゆえに re-rsin^20=0 (2)=4(rcose) (rsin0)2 r(r+sin20)(r-sin20)=0 r=0 または r = sin 20 またはr=-sin20 よって ここで,r=-sin20から -r=sin{2(0+z)} 点(r, 0) と点(-r, 0+π) は同じ点を表すから, r=sin20と r-sin 20 は同値である。 ←2sincos0=sin 20 X3 また, 曲線 r=sin20は極を通る。 したがって, 求める極方程式は 88 r=sin20 ←0=0のとき 次に,f(x,y)=(x2+y2)-4x2y2 とすると, 曲線の方程式は f(x, y) = 0...... ① sin 20=0 f(x, -y)=f(-x, y) =f(-x, -y)=f(x, y) であるから, 曲線はx軸, y 軸, 原点に関してそれぞれ対称である。 20,0≧≦として、いくつかの0の値とそれに対応する ←(-x)²=x². F(-y)²=y² AB Jet の値を求めると,次のようになる。 π 0 r 20 0 1212 1822 兀 兀 √√2 √3 63 4 1 2 1332 √3 √2 382 ・π 5 兀 ・π 12 2 0 |1|2 これをもとにして, 第1象限にお ける ① の曲線をかき, それとx 軸,y軸,原点に関して対称な曲 線もかき加えると, 曲線の概形は yA 1 24 32 右図のようになる。 (1, 0) x (0) (12/20) ←y=sin20のグラフは 直線 0=7 に関して対 称でもある。 ←図中の座標は,極座標 である。 検討 α を有理数とする とき, 極方程式 r=sina0 で表される曲 線を正葉曲線 ( バラ曲 線)という。

回答募集中 回答数: 0