学年

質問の種類

物理 高校生

気体が真空へ膨張するときなぜ仕事をしないとなるのでしょうか

図のように,栓Cが付いた細い管でつながれた二つの円筒容器 A, B がある。左の 容器 A の体積は Vo で, 右の容器 B には, なめらかに動く断面積Sのピストンが取り 付けられている。はじめ,栓Cは閉じられており,容器 A には絶対温度 To で外部と 同じ圧力 Poの気体が入っている。また, 容器Bの内部は真空であり, 体積が夢とな るようにピストンが固定されている。 ただし, 円筒容器,栓,ピストンは熱を通さ ず, 細い管の体積は無視してよいものとする。 O 0 ピストン製 S 容器 A 栓C 容器B (断面積) C Vo, To, Po Vo 1/2 真空 Poえなけれ 問1 ピストンの位置を保ったまま栓Cを開くと, 気体が容器 A, B 全体に一様に広 がった。この過程に関する記述として正しいものを二つ選べ。原千代千葉華 ① 気体は外部に対して仕事をせず, 気体の圧力は減少した。 間 Vq .> ② 気体は外部に対して仕事をせず, 気体の圧力は変化しない。 気体は外部に対して仕事をせず,気体の圧力は変化しない。標 ③ 気体は外部に対して仕事をし, 気体の圧力は減少した。 ④ 気体は外部に対して仕事をし, 気体の圧力は変化しない。 2 ⑤ 気体の温度は 1 To に下がる。 0EST @ ⑥ 気体の温度はTのまま変化しない。 3 2 ⑦ 気体の温度はTに上がる。 シリンダー ocea 083 Q 068 0

回答募集中 回答数: 0
物理 高校生

(6)浮力は使えないのでしょうか

124 2014 年度 物 II] つぎの文の に入れるべき数式を 図3-1のように, 大気圧P。 中に支持棒で天井に固定されたピストンに対し て,鉛直方向になめらかに動く断面積S の円筒容器が静止している。円筒容器 の中には1モルの単原子分子の理想気体 Aが閉じ込められており、その底には 質量 M の加熱器が取り付けられている。 床には底面積2S の円筒状の水槽が置 かれており、その中には密度の水が入っている。 円筒容器とピストンは断熱 材でできており,また円筒容器の壁の厚みと質量は無視できるものとする。理想 気体の気体定数を R,重力加速度の大きさをgとする。 はじめに図3-1のように,円筒容器の下面は水面からはなれた位置で静止し ている。このときのAの圧力は P1, 体積は V, 絶対温度は T, であった。 P」を (2) とな R, T,, V, で表すと (1) M をg, Po, P,, S で表すと る。 つぎに図3-2のように,Aに熱量Q をゆっくりと加えると円筒容器がんだ け降下し、その下面は水面と一致し Aの絶対温度は T2 になった。 ん を S, T.. T2, V, で表すと (3) となる。この過程でAの内部エネルギーの変化をん P1, Sで表すと (4) Aが外部にした仕事を Q で表すと (5) とな る。 さらに図3-3のように,Aに熱量Q をゆっくりと加えると円筒容器がんだ と け降下し,Aの圧力は P2, 絶対温度は T, になった。 P2 を P,, h, g, p で表す (6) となるので,この過程の圧力P を縦軸に、体積Vを横軸にとった P-V 図のグラフの傾きはg, S, p で表すと (7) となる。この過程でA 外部にした仕事をP, g, h, S, p で表すと (8) となる。

回答募集中 回答数: 0
物理 高校生

(1)について質問です B室のところで圧力をp1として計算しているのはなぜですか?

状態 1 A 室 IS B室 To To L L 265 断熱変化■ 図のように,両端を閉じた長さ2L, 断面積Sのシリンダー内部に, なめらかに動く厚さの無視 できる壁を取りつけ, A室およびB室に区切る。このシリ ンダーおよび壁は断熱材でつくられており, A室内の気体 はヒーターにより加熱できるものとする。 A室およびB室 状態 2 のそれぞれに, 温度 To の単原子分子理想気体1mol を封 入すると,気体の圧力はともに po となり, 壁はシリンダー の中央に静止した (状態1)。 次にA室内の気体を加熱した A 室 B 室 T1 T2 d ところ, A 室内の気体の圧力が上昇し、壁がシリンダーの中央よりd (<L)だけ右 に移動し静止した(状態2)。 A室内の気体が吸収した熱量Qと壁の移動量dの関係を求 めたい。 気体定数をRとする。 (1) 状態2におけるA室内の気体の温度 T, およびB室内の気体の温度T2を, To, L, d, Do, p を用いて表せ。 P1 5 =/1/3とし (2) を, L, d を用いて表せ。なお, 単原子分子理想気体の断熱変化では,y=1/3 po てV'=一定の関係が成りたつことが知られている。 (3)状態1から状態2への変化で,A室内の気体の内部エネルギーの変化 4UA, および B室内の気体の内部エネルギーの変化 4UB を, To, R, L, d を用いて表せ。 (4) A室内の気体がB室内の気体に対してした仕事を Wとする。 4U および 4UB を, QWのうち必要なものを用いて表せ。 (5) Q を, To, R, L, d を用いて表せ。 [22 岡山大 改] 254

回答募集中 回答数: 0
物理 高校生

2枚目の解答のオレンジ線を引いているところについて質問です。 問題にはシリンダーとピストンは断熱材で作られている、と書かれているので断熱変化なのかとおもっていたのですが、ばねがついていると断熱変化では無くなるのですか?

1 264 ばね付きピストン■図のように, なめらかに動くピス トンとヒーターを備えた底面積Sのシリンダー内に1molの単原 子分子理想気体を入れる。 ピストンは, ばね定数んのばねで壁に 連結している。大気圧 のとき, シリンダーの底からピストン までの距離が でつりあい, ばねは自然の長さになっている。シ リンダーとピストンは断熱材で作られ,外からの熱の出入りはな いものとする。 気体定数をRとして、 次の問いに答えよ。 (1) このときの気体の温度T を求めよ。 10000000 ヒーター % k mo (2)次に, ヒーターで熱量Qを与えたら気体の温度は上昇し, ばねはxだけ縮んだ。 次の 気体の各量を求めよ。 (ア) 変化後の気体の圧力(イ) 内部エネルギーの増加⊿U (ウ) 気体が外部にした仕事 W' (エ) 加えた熱量 Q (3) ピストンから静かにばねをはずし, 気体をゆっくりと変化させると気体の圧力はpo になった。 圧力と体積の関係をグラフで表せ。 物

回答募集中 回答数: 0
化学 高校生

ウ を教えて頂きたいです。

ウ 2024/9/28(木) 78 期 第2学年 理化学 前期期末考査 についてはあてはまる文を 6. 次の文章中の空欄ア~ウに入る数値を有効数字2桁で求め、 acの記号で答えよ。 ただし、温度変化による容器の体積変化および容器以外の内容積は無視する。 また、気体はすべて理想気体であるとし、27℃での飽和水蒸気圧を3.5×10 Paとする。 気体定数R =8.31×103 Pa・L/(K・mol)、原子量 H=1.0、C=12.0=16 みさくなれば B (内容積 2.0L) がある。 右図のように、 コックで連結された耐圧容器 A (内容積 1.0L)と 246 いま、コックを閉じた状態でAにエタン C2H6 1.8g、Bに酸素 8.0g を入れ、ともに27℃に保った。 このとき、 A内の圧力は Caffe- 189 7.nmolの気体に 対し、実在気体で ①分析 ファンデルワ コック 状態方程式を IL 2.0L まず、①の のため A B 正すること Paであった。 次に、 A、Bを27℃に保ったままコックを開け、 両気体を混合した。 やがて気体は同一組成となり、 エタンの分圧はイPa を示した。 続いて、コックを開けたまま容器A・B ともに227℃に上げた。 一定時間が経過したあと、混合気体中 のエタンを完全燃焼させた。このとき、A、Bの全圧はウ Paであった。 その後、コックを閉じ、 A を 227℃に保ったまま、Bの温度だけを27℃に下げた。このとき、B内には [エ: a. 液体の水が存在する b. 液体の水は存在しない 判断できない 1. 次に、 と、式X 以上 c. 液体の水の有無はこのデータからは とい mol 8.31 (1) 49.86

回答募集中 回答数: 0
化学 大学生・専門学校生・社会人

はじめまして。 問2.3がわからなくてとても困っています。 もしよろしければ教えていただきたいです。 よろしくお願いします。

<問題> 1) 安息香酸、クロロフェノール、アントラニル酸メチルのpK』 をPubChem で調査せよ。 2) 二つの化学種が平衡状態にあるとき、 Gibbs 自由エネルギー差はAG =-RT In K で表 される。 ここでKは平衡定数 (ある化学種に占めるもう一方に化学種の割合) である。 メチルシクロヘキサンのメチル基がアキシアルを占める立体配座とエクアトリアルを 占める立体配座の標準状態における存在比を求めよ。 計算実験で得られた立体配座異 性体のエネルギーの差を Gibbs 自由エネルギー差の近似値として用いてよい。 なお、In (エルエヌ) は自然対数を指しInx = yならばey=x (左辺はexp (y) と書くこともある) である。 気体定数は R ≒ 8.31 JK-1 mol-1 を用いよ (Bruice 有機化学、 5.7 参照)。 3) メタン、エチレン、アセチレンの分子軌道を量子化学計算の一種であるハートリー・ フォック法により計算せよ。 Engine: Gamess, Calculation: Molecular Orbitals, Theory: RHF, Basis Set: Minimal:STO-3G を指定せよ。 各化合物はそれぞれいくつの 分子軌道をもつか。 上記のうち、 多重結合を有する化合物について、 全ての軌道を 図示し占有数(Occupancy) を示せ。 また、 それぞれの化合物の結合角(∠HCH やく HCC) はおよそ何度か。 これまでに学習した軌道の混成状態についての知識と比較せ よ。

回答募集中 回答数: 0