学年

質問の種類

数学 高校生

108.2 記述に問題ないですか? また、解答はなぜ0<p<q<rと書いているのですか? 素数の中で最小は2なので2≦pと言えないですか? (なので自身の記述では2≦p<q<rと書いています。)

474 00000 基本例題108 素数の問題 (1) nは自然数とする。 n2+2n- 24 が素数となるようなn をすべて求めよ。 練習 3 108 [(2)類 同志社大] (2) ,g,rp <g <r である素数とする。 等式r=g² -p を満たすか, 4,rの 組 (p,q,r) をすべて求めよ。 素数の正の約数は1とか 自分自身) だけである このことが問題解決のカギとなる。 なお, 素数は2以上 (すなわち正) の整数である。 これが素数となるには, n +6>0と!より,-4, (1) n²+2n−24=(n-4)(n+6) n+6のどちらかが1となる必要がある。 ここで,n-4とn+6の大小関係に注目する と、おのずとn-4=1に決まる。 (2)等式を変形すると (g+p) (g-p=r p>g-p>0,r は素数であることに注 目すると g-p=1 ここで,g, p はその差が奇数となるから, 一方が奇数で,他方が偶数である。 ここで, 「偶数の素数は2だけ である」という性質を利用すると、かの値が2に決まる。 CHART 素数 正の約数は1とその数だけ 偶数の素数は2だけ 指針 解答 (1) n²+2n−24=(n-4)(n+6) nは自然数であるから n +6>0 n²+2n−24が素数であるとき, ① から n-4=1 ゆえに n=5 よって このとき n²+2n−24=(5-4)(5+6)=11 これは素数であるから, 適する。 したがって n=5 (2) r=q²-p²t²5 (q+p)(q-p)=r 0 <p <g <rであるから 0 <g-p <g+p ①が素数であるから, ② より gtp=r, g-p=1 g-p=1 (奇数)であるから, g, かは偶奇が異なる。 更に, p<g であるからp=2 よってg=3 ゆえに r=3+2=5 したがって (p, q, r)=(2, 3, 5) POINT ① また n-4<n+6 n-4>0 2005 ·· (*) H 5+2=3 奇 偶偶 = まず, 因数分解。 (*) n-4=1が満たされて もn+6=(合成数)となって しまっては不適となる。 その ため。n²+2n−24 が素数と なることを確認している [n+6=5+6=11 (素数) の 確認だけでも十分である ] 。 素数は2以上の整数。 g, かのどちらか一方は 2 となる。 2 整数の和(または差)が偶数2整数の偶奇は一致する 2 整数の和 (または差)が奇数2整数の偶合は異なる (1)は自然数とする。 次の式の値が素数となるようなをすべて求めよ (ア) n²+6n-27

回答募集中 回答数: 0
数学 高校生

108.2 記述に問題ないですか? また、解答はなぜ0<p<q<rと書いているのですか? 素数の中で最小は2なので2≦pと言えないですか? (なので自身の記述では2≦p<q<rと書いています。)

474 00000 基本例題108 素数の問題 (1) nは自然数とする。 n2+2n- 24 が素数となるようなn をすべて求めよ。 練習 3 108 [(2)類 同志社大] (2) ,g,rp <g <r である素数とする。 等式r=g² -p を満たすか, 4,rの 組 (p,q,r) をすべて求めよ。 素数の正の約数は1とか 自分自身) だけである このことが問題解決のカギとなる。 なお, 素数は2以上 (すなわち正) の整数である。 これが素数となるには, n +6>0と!より,-4, (1) n²+2n−24=(n-4)(n+6) n+6のどちらかが1となる必要がある。 ここで,n-4とn+6の大小関係に注目する と、おのずとn-4=1に決まる。 (2)等式を変形すると (g+p) (g-p=r p>g-p>0,r は素数であることに注 目すると g-p=1 ここで,g, p はその差が奇数となるから, 一方が奇数で,他方が偶数である。 ここで, 「偶数の素数は2だけ である」という性質を利用すると、かの値が2に決まる。 CHART 素数 正の約数は1とその数だけ 偶数の素数は2だけ 指針 解答 (1) n²+2n−24=(n-4)(n+6) nは自然数であるから n +6>0 n²+2n−24が素数であるとき, ① から n-4=1 ゆえに n=5 よって このとき n²+2n−24=(5-4)(5+6)=11 これは素数であるから, 適する。 したがって n=5 (2) r=q²-p²t²5 (q+p)(q-p)=r 0 <p <g <rであるから 0 <g-p <g+p ①が素数であるから, ② より gtp=r, g-p=1 g-p=1 (奇数)であるから, g, かは偶奇が異なる。 更に, p<g であるからp=2 よってg=3 ゆえに r=3+2=5 したがって (p, q, r)=(2, 3, 5) POINT ① また n-4<n+6 n-4>0 2005 ·· (*) H 5+2=3 奇 偶偶 = まず, 因数分解。 (*) n-4=1が満たされて もn+6=(合成数)となって しまっては不適となる。 その ため。n²+2n−24 が素数と なることを確認している [n+6=5+6=11 (素数) の 確認だけでも十分である ] 。 素数は2以上の整数。 g, かのどちらか一方は 2 となる。 2 整数の和(または差)が偶数2整数の偶奇は一致する 2 整数の和 (または差)が奇数2整数の偶合は異なる (1)は自然数とする。 次の式の値が素数となるようなをすべて求めよ (ア) n²+6n-27

回答募集中 回答数: 0
数学 高校生

108.1 記述これでも大丈夫ですか??

Ad 474 00000 基本例題108 素数の問題 (2) , g, rp <g <r である素数とする。 等式r = g² -p を満たすか,q, r (1) nは自然数とする。n²+2n−24 が素数となるようなnをすべて求めよ。 [(2)類 同志社大) 組 (p, g, r) をすべて求めよ。 自分自身) だけである 指針▷ 素数の正の約数は 1 このことが問題解決のカギとなる。 なお,素数は2以上 (すなわち正)の整数である。 (1) n²+2n−24=(n-4)(n+6) これが素数となるには,n+6>0と より,カー4) n+6のどちらかが1となる必要がある。 ここで,n-4とn+6の大小関係に注目する と, おのずとn-4=1に決まる。 奇偶= 目すると g-p=1 (2)等式を変形すると (g+p) (g-p=r g+p>g-p>0,r は素数であることに注 ここで, g, p はその差が奇数となるから, 一方が奇数で,他方が偶数である。 ここで, 「偶数の素数は2だけ である」という性質を利用すると, かの値が2に決まる。 奇奇=個 偶 =偶 偶 【CHART 素数 正の約数は1とその数だけ 偶数の素数は2だけ 解答 (1) n²+2n−24=(n-4)(n+6) nは自然数であるから n +6> 0 n²+2n−24が素数であるとき, ① から よって このとき n-4=1 ゆえに n=5 n²+2n−24=(5-4)(5+6)=11 これは素数であるから, 適する。 したがって n=5 (2) r=q²-p²-5 (1) また n-4<n+6 n-4>0 POINT (q+p)(q-p)=r 0 <p <g <rであるから rが素数であるから ② より gtp=r, g-p=1 gp=1 (奇数)であるから, g, かは偶奇が異なる。 更に, p<g であるからp=2 よってg=3 ゆえに r=3+2=5 したがって (p, q, r)=(2, 3, 5) ■まず, 因数分解。 (*) n-4=1が満たされて もn+6=(合成数)となって しまっては不適となる。 その ため, n²+2n−24 が素数と なることを確認している [n+6=5+6=11 (素数)の }………(*) の確認だけでも十分である]。 (2) 0<g-p <g+p 2 整数の和(または差)が偶数 整数の和 (または差) が奇数⇔ IS } 素数は2以上の整数。 g, pのどちらか一方は2 となる。 2整数の偶奇は一致する 2 整数の偶奇は異なる KLASSIES IST 練習 (1) nは自然数とする。 次の式の値が素数となるようなn をすべて求めよ。 3 108 (ア) n²+6n-27

回答募集中 回答数: 0
数学 高校生

107. n>0,m>0よりm-n>0という書き方は問題ないですか? また、m-n≧1というのは m,nはともに自然数だからm+n,m-nは自然数。 自然数×自然数=40(自然数)になるとき m-nは1以上でないと 自然数×自然数は自然数にならないからですか? (わかりやす... 続きを読む

107 √2次式の値が自然数となる条件 n²+40 が自然数となるような自然数n をすべて求めよ。 3 重要 例題 指針> √n²+40= よって ここで, A,B,Cが整数のとき, ABCならば A,BはCの約数 を利用して, ① を満たす整数m+n, m-nの組を考える。 (は自然数)とおき,両辺を平方して整理すると²-n²=40 (m+n) (m-n)=40 ・① このとき,0,n>0より+n>0であるから,①が満たされるときm-n>0 更に,m+n>m-nであることを利用して,組の絞り込みを効率化するとよい。 CHART 整数の問題 (積)=(整数)の形を導き出す 1 - (2数の積)=(整数)の形。 解答 ²+40mmは自然数) とおくと n<m 平方してn²+40=m² ゆえに (m+n) (m-n)=40 mnは自然数であるから, m+n, m-nも自然数であり, 40の約数である。 また,m+n>m-n≧1であるから ① より [m+n=40 [m+n=20 m-n=1 > 一致す ... m+n=10 m+n=8 m-n=5 m-n=2'lm-n=4' 41 13 3 解は順に(m,n)=(1/2,228) (11, 9), (7,3), 39), (22.2) したがって、求めるnの値は n=9, 3 <<n=√√n² <√n² + 40 =m ①m²-n²=40 <n>0から m+n>m-n <m+n=a,m-n=bとす ると a+b 2 a-b 2 <m n が分数の組は不適。 m= n= 検討 積がある整数になる2整数の組の求め方 上の解答の①のように、積) = (整数)の形を導く 1つである。(積)=(整数)の形ができれば、指針の 答えにたどりつくことができる。 また、上の解答では、積が 40 となるような2つ の自然数の組を調べる必要があるが, そのような組 は、右の で示された, 2数を選ぶと決まる。 例えば、 140 に対して (1,40) と (40, 1) の2組 ある。 ちなみに, 「(積が40となる) 2つの整数の組」 が決まるから、条件を満たす組は全部で4×2=8 (組) という条件の場合は、負の場合も考える必要がある ため、組の数は倍 (16組) になる。 しかし、上の解答では, る。 なお、整数α bに対し (a+b)(a-b) = 26 (偶数) であるから, a+b と α-bの偶奇は そのことを利用すると, 上の解答の の組は省くことができて, 2組に絞られるか ことは,整数の問題における有効な方法の を利用することで,値の候補を絞り込み, 40 の正の約数 4023・5 から (3+1)(1+1)=8(個) 1,2,4,5,8,10, 20, 40 を利用することで, (m+n,m-n) の組を4つに絞る工夫をしてい 473 4章 17 約数と倍数、最大公約数と最小公倍数 る。 であ であ 1, n- 音数 あ あ った 数 こ ① + PN >

回答募集中 回答数: 0
数学 高校生

106.3 56=2^3×7だから n=p^14(pは自然数)であることはあり得ないから 15=3×5で考えるべきだ。 と頭の中で考えるのは簡単ですが 解答のようにp,qを用いて記述するのがしっくりきません。 p,qを用いない解答例(記述式)があれば教えてください。

472 基本 例題 106 約数の個数と総和 (1) 360 の正の約数の個数と,正の約数のうち偶数であるものの総和を求めよ。 (2) 慶応大] (2) 12" の正の約数の個数が28個となるような自然数nを求めよ。 (3) 56の倍数で,正の約数の個数が15個である自然数nを求めよ。 指針▷ 約数の個数, 総和に関する問題では,次のことを利用するとよい。 自然数Nの素因数分解が N = pag...... となるとき 正の約数の個数は (a+1)(6+1)(c+1)...... E©**** (1+p+p²+...+pª)(1+q+q²+···+q')(1+r+r²+...+pc).….…... (1) 上のN2を素因数にもつとき, Nの正の約数のうち偶数であるものは 2aqb.gc…..... (a≧1,b≧0,c≧0,...;q, r, ・は奇数の素数) 1+ の部分がない。 【CHART 約数の個数, 総和 素因数分解した式を利用 468 基本事項 と表され その総和は (2+2²+...+2ª)(1+q+q²+…+q°)(1+r+r²+...+rc)... を利用し, nの方程式を作る。 (2) (3) 正の約数の個数 15 を積で表し, 指数となる a, b, ・・・・・ の値を決めるとよい。 des 15 を積で表すと, 15・15・3であるから, nは15-11-1または 13-1の形。 となる 解答 (1) 360=2・32・5 であるから,正の約数の個数はAVH-S- (3+1)(2+1)(1+1)=4・3・2=24(個) また,正の約数のうち偶数であるものの総和は ←p,g,r, ….. は素数。 pag're の正の約数の個数は (α+1)(6+1)(c+1) (p,q,r は素数) (2+22+2)(1+3+32)(1+5)=14・13・6=1092 (2) 12"=(22・3)" = 22" ・3" であるから 12" の正の約数が 28 個 であるための条件は (2n+1)(n+1)=28 よって nは自然数であるから n=3 (3)の正の約数の個数は 15 (=15・15・3) であるから, nは 14 または pq2 (p, g は異なる素数) の形で表される。 2n²+3n-27=0 ゆえに (n-3)(2n+9)=0 たら誤り。 積の法則を利用しても求め られる (p.309 参照)。 ONT RJUUS 1=5310 A ◄(ab)"=a"b", (a")"=a™ のところを2m n とし 素数のうち、 偶数は2の みである。 15.1から p15-1g1 5.3 から -13-1 nは56の倍数であり, 56=23.7であるから、n は の形の場合は起こらない。 で表される。したがって, 求める自然数nは n=24・7=784 <p=2, g=7 練習 ② 106 (2)正の約数の個数が3で,正の約数の総和が 57 となる自然数n (3) 300以下の自然数のうち 工の数 求めよ。 (1) 756 の正の約数の個数と、 正の約数のうち奇数であるものの総和を求めよ。 n を求めよ。 重要 例 √√n² +40 指針net よって ここて を利用 このと 更に, CHART 解答 √n²+40=r 平方してn mnは自然 4の約数 また,m+n m+n m-n 解は順に( したがって, 検討 積カ 上の解答の 1つである 答えにたど また,上 の自然数の は、右の が決まるが ある。 ちな という条件 ため、組 しかし, 上 る。なお, 一致する。 更に効

回答募集中 回答数: 0
数学 高校生

106.2 記述これでも大丈夫ですか??

472 基本 例題 106 約数の個数と総和 31/ 00000 (1) 360 の正の約数の個数と、 正の約数のうち偶数であるものの総和を求めよ。 (2) 12" の正の約数の個数が28個となるような自然数n を求めよ。 [(2) 慶応大] (3) 56の倍数で, 正の約数の個数が15個である自然数nを求めよ。 指針▷ 約数の個数, 総和に関する問題では,次のことを利用するとよい。 自然数Nの素因数分解が N = pagere…..... となるとき 正の約数の個数は (a+1)(b+1)(c+1)...... EO (1+p+p²+…+pª)(1+g+q²+…+q¹)(1+r+r²+…+r²)....... 【CHART 約数の個数, 総和 素因数分解した式を利用 (1) 上のNが2を素因数にもつとき, Nの正の約数のうち偶数であるものは 2.gº.y....... (a≧1,6≧0,c≧0, … ; g, , ... は奇数の素数) 1+ の部分がない。 と表され, その総和は (2+22+..+2°) (1+g+q²+ +q°)(1+r+y^+..+rc)... を利用し, nの方程式を作る。 (2) (3) 正の約数の個数15を積で表し, 指数となる a, b, の値を決めるとよい。 15 を積で表すと, 15・1, 53 であるから, nは15-11-1 または'-'g3-1の形。 p.468 基本事項 ④4 ←P, 4, Y, ··· は素数。 解答 (1) 360=232.5であるから, 正の約数の個数は (3+1)(2+1)(1+1)=4・3・2=24 (個) また,正の約数のうち偶数であるものの総和は pg're の正の約数の個数は (a+1) (6+1)(c+1) (p,g,r は素数) の形で表される。 nは56の倍数であり, 56=23・7であるから, nはP2 の形 で表される。したがって, 求める自然数nは n=24.72=784 < 素数のうち, 偶数は2の みである。 (2+2+2)(1+3+3)(1+5)=14・13・6=1092 (2) 12"=(2・3)" = 22" 3" であるから 12" の正の約数が28個 (ab)"=a"b", (a")"=a" であるための条件は (2n+1)(n+1)=28 よって 2n²+3n-27=0 ゆえに (n-3) (2n+9)=0 nは自然数であるから n=3 (3)の正の約数の個数は 15 (=15.1=5・3) であるから, nは または pq2 (p, g は異なる素数) 積の法則を利用しても求め られる (p.309 参照)。 m のところを 2nn とし たら誤り。 15・1から 15-101-1 5・3 から 3-1 の場合は起こらない。 <p=2, q=7

回答募集中 回答数: 0