学年

質問の種類

数学 高校生

A→Pまでの場合分けについて教えてください🙇🏻‍♀️‪‪

り! 4連勝した が決まる。 クゲーム目に 20 のどちら ◯加法定 コーバ 重要 例題 48 平面上の点の移動と反復試行 右の図のように,東西に4本,南北に4本の道路が ある。地点Aから出発した人が最短の道順を通っ て地点Bへ向かう。このとき,途中で地点Pを通る 確率を求めよ。ただし,各交差点で,東に行くか, 北に行くかは等確率とし,一方しか行けないときは 確率1でその方向に行くものとする。 CHART O SOLUTION 最短経路 道順によって確率が異なる A→P→Bの経路の総数 A→Bの経路の総数 4C3X1 6C3 これは,どの最短の道順も同様に確からしい場合の確率で, 本間は道順によって確率が異なる。 例えば, 111 1 22 22 求める確率を A↑ →→→P↑↑B の確率は 1回目の当 A→→→↑P↑↑B の確率は 解答 右の図のように,地点 C, C', P'をと る。 P を通る道順には次の2つの場合 があり,これらは互いに排反である。 [1] 道順A→C→C→P→Bの場合 この確率は 1/2x1/x/1/2×1×1×1=1/28 [2] 道順A→P'→P→Bの場合 この確率は sc (12/2(1/2)×1/1×1×1=1/16 3 1: 3C 5 よって、求める確率は 1/3+1/6=1 8 から, 1 1 1 22 2 8 よって, P を通る道順を, 通る点で分けて確率を計算する。 3 ·1·1: ・・1・1・1= 1 16 1 C' B P P C PRACTICE・・・・ 48 ③ 右の図のように、東西に4本、南北に5本の道路がある。地 点Aから出発した人が最短の道順を通って地点Bへ向かう。 このとき,途中で地点Pを通る確率を求めよ。ただし、各交 差点で、東に行くか、北に行くかは等確率とし,一方しか行 けないときは確率1でその方向に行くものとする。 とするのは誤り! A | A A 確率の加法定理。 B P P | 基本 27,46 ◆C→Pは1通りの道順 であることに注意。 [1] →→→↑↑↑と進む。 [2] ○○○→↑↑と進む。 ○には2個と↑1個 が入る。 北 P B 北

回答募集中 回答数: 0
数学 高校生

写真の赤線部の「(1)ではQにつくまで」という意味がわかりません。(1)もRに着いたら必ずQに行くから、(1)も(2)と同様にRまでの経路しか考えていないのではないでしょうか?解説おねがいします。

126 道の確率 右図のような道があり, PからQまで最短経路で すすむことを考える. このとき, 次の問いに答えよ. (1) 最短経路である1つの道を選ぶことが同様に確 からしいとして, Rを通る確率を求めよ.〇〇 (2) 各交差点で, 上へ行くか右へ行くかが同様に確からしいとき R を通る確率を求めよ. 精講 (1) 題意は 「仮にPからQまで道が5本あったとしたら、1つの道 を選ぶ確率は- J ということです。 (2) 題意は「ある交差点にきたとき,上または右を選ぶ確率がそれぞれ1/2」と いうことです. AQ 2!1! (1) PからQまで行く最短経路は 4! 3=4(通り)(4Cでもよい) また, PからRまで行く最短経路は 3! -=3(通り) ( 3 でもよい) よって, 求める確率は 解答 RからQまで行く最短経路は1通りだから PからRを通りQまで行く最短経路は 3×1=3(通り) 3 4 (2) (1) より題意をみたす経路は3本しかないことがわかる. ここで, A, B, C, D を右図のように定める. i) P→A→B→Rとすすむ場合, 進路が2つある交差点はPのみ. 1 よって, i) である確率は 2 1/2 + 1/2 + 1/1/201 4 ii) P→C→B→Rとすすむ場合, 進路が2つある交差点は,PとCの2点。 よって,i) である確率は(12)=1/1 i) P→C→D→Rとすすむ場合, 進路が2つある交差点は, P,C,D の3点 よって,)である確率は(12/2)=1/1/2 i), ii), ) は排反だから, 求める確率は 1112 7 8 A B R PCD と辿る この道は、 205 LOYSI [注] 上の(1), (2) を比べると答が違います。 もちろん, どちらとも正解 です. 確率を考えるとき 「同様に確からしいのは何か?」 ということ が結果に影響を与えます. また (1)と(2) でもう1つ大きな違いがあります. それは, (1) では 「Qにつくまで」 考えなければならないのに対して, (2) では 「Rにつ いたら, それ以後を考える必要がない」点です.

回答募集中 回答数: 0