学年

質問の種類

数学 高校生

青チャートIA、場合の数と確率について質問があります。下に写真を貼り付けたのですが、なぜ同じような問題でもこのように解き方が変わってしまうのでしょうか。なるべくわかりやすく教えてください🙇🏻‍♀️よろしくお願いします。

378 基本例 例題 30 最短経路の数 右の図のように,道路が碁盤の目のようになった街がある。 地点Aから地点Bまでの長さが最短の道を行くとき,次 の場合は何通りの道順があるか。 (1) 全部の道順 (2) 地点 Cを通る。 [類 東北大〕 ○ (3)地点Pは通らない。 (4) 地点Pも地点 Q も通らない。 + 基本27 AL 指針AからBへの最短経路は,右の図で 右進 または 上進する ことによって得られる。 右へ1区画進むことを,上へ1区 画進むことを↑ で表すとき,例えば, 右の図のような2つの まちがしが敗因 (3) 通行止め からのリスタート最短経路は 地点配置 赤の経路なら 青の経路なら -1--111-1-1 0000 111→11→1→→ で表される。 したがって, AからBへの最短経路は, 5個 16個の同じものを含む順列で与えられる。 (2) A → C, C→B と分けて考える。 積の法則を利用。 (3) (Pを通らない)=(全道順) (P を通る) で計算。 C A (4) すべての道順の集合をUPを通る道順の集合をP, Q を通る道順の集合をQと n(PnQ)=n(PUQ)=n(U)-n (PUQ) ド・モルガンの すると, 求めるのは つまり ここで つまり (PもQも通らない)=(全道順)-(PまたはQを通る) 個数定理 n(PUQ)=n(P)+n(Q)-n(PnQ) 法則 (P または Q を通る) = (P を通る) + (Q を通る) (PとQを通る) 右へ1区画進むことを→, 上へ1区画進むことを↑で表す。 解答 (1) 最短の道順は5個, 16個の順列で表されるから 11! 5!6! 11-10-9-8-7 5・4・3・2・1 462(通り) (2) A から Cまでの道順 CからBまでの道順はそれぞれ 組合せで考えてもよい。 次ページの別解参照。 AからCまでで 3! 8! -=3(通り), -=70(通り) 1!2! 4!4! →1個, 2個 CからBまでで よって, 求める道順は 3×70=210(通り) →4個 14個 5! 5! (3)Pを通る道順は × -=10×10=100 (通り) 2!3! 2!3! よって, 求める道順は 7! 3! (4) Q を通る道順は × 3!4! 1!2! 462-100=362 (通り) =35×3=105 (通り) (Pを通らない) =(全体)(Pを通る) PとQの両方を通る道順は 5! 3! =10×3=30(通り) 2!3! 1!2! ▼PからQに至る最短の 道順は1通りである。 よって, Pまたは Q を通る道順は ゆえに, 求める道順は 100+105-30=175 (通り) 462-175=287 (通り)

未解決 回答数: 1
数学 高校生

写真の質問に答えてください!

84 重要 例題 174 曲面上の最短距離 右の図の直円錐で,Hは円の中心,線分 AB は直径, OH は円に垂直で, OA=a, sin=1/3 とする。 点Pが母線 OB 上にあり, PB= 点Aからこの直円錐の側面を通って点Pに至る最短経 路の長さを求めよ。 a B=/1/3 とするとき, 解答 sin= =1/3であるから AB=2r とすると,△OAH で, AH=r, ∠OHA=90°, r_1 ---- 円錐の側面は曲面であるから, そのままでは最短経路は考えにくい。 そこで、曲面 側面の展開図は扇形となる。 を広げる,つまり 展開図で考える。 なお,平面上の2点間を結ぶ最短の経路は、2点を結ぶ線分である。 a 側面を直線OA で切り開いた展 開図は、図のような, 中心 0, 半径OA=αの扇形である。 中心角をxとすると、図の 弧 ABA' の長さについて 2ла• r_1 360° -= 2πr -であるから - a 3 B P 0 x=360° =360°/1-120° a ここで, 求める最短経路の長さは、図の線分 AP の長さで あるから、△OAP において、余弦定理に 理により より AP2= OA2+OP2-20A ・CPCO 6'0 a ² + ( 1²/3-a) ². -2a---a a. 9 AP >0であるから, 求める最短経路の長さは -a² A' 誰 √7 A 00000 0 iz. この式体 a 基本153 HE S 20115 【弧 ABA' の長さは,底面 の1の円周に等しい。 2点S, T を結ぶ最短の 経路は, 2点を結ぶ線分 ST 11 ol 2

未解決 回答数: 0
数学 高校生

第2問(2)のコサシスセソについてです。 2枚目の解答の波線部分がよく分からないので、分かる方がいらっしゃったら教えて頂きたいです🙇‍♀️

第2問~第4問は、いずれか2問を選択し、 解答しなさい。 第2問 選択問題 (配点20) 図1のように、東西南北に作られた碁盤の目状の道路があり、交差点と交差 点の間の1区画の距離は1km である。 0° 0 が対応している。 .P 北 図1 地点Oから地点P までの最短経路について考えてみよう。 東に1区画進むことを「→」,北に1区画進むことを「↑」と表すことにすると 一つの最短経路に対して、「→」3個 「1」 3個の並べ方が一つ対応するので最 短経路の総数はアイ通りと求められる。 東 西 最短経路の距離は6km であるが,初めて地点Pに到達するまでの距離が8km になるような経路の総数はいくつになるだろうか。 ただし, 図1の道路のみを移 動し、交差点以外の場所で進む方向を変えないこととする。 例えば、距離が8km になるような経路には図2、図3のような場合がある。 P P 南 図2 図3 西に1区画進むことを 「←」 南に1区画進むことを「↓」と表すことにし, 経 路に対応した←↑↓の順列を道順ということにすると 図2の経路には, 道順→↑←↑→→→↑ 図3の経路には, 道順 →↑↑→↓→↑↑ (第6回3) (数学Ⅰ・数学A 第2問は次ページに続く。) (1) ↑↓の順列には対応する経路が存在しないものも含まれる。 例えば、道 には対応する経路がない。 ウ 順 HO I と する。 I nom O ② ↑↑↑↓→→1③→→→1→1-1- の解答群 (解答の順序は問わない。) オ ↑→↓→↑↑↑ 2017 (2) 図2のように, 「←」 が含まれるような道順の総数を考える。ただし、例えば, 道順が→→→↑↑↑← → のように最短経路で地点Pに到達した後、1kmの区 仕復して再び地点Pに到達する経路も含めて考える。 」か「↑」 が3個の順列が一つ対応 一つの経路には、「 T20 2015 40ATEMONEY (1) での考察から 「→」が4個, 「←」 が1個の5個については、 並びにオ という制約があるので,「→」が4個,「←」が1個の5個の並び方は カ 通りある。 $33458200% AS これに 「↑」を含めた8個を並べると, 「←」が含まれる道順の総数はキクケ 通りある。 同様に考えると、図3のように,「↓」が含まれる道順の総数はコサシ 通 01030943-1 りある。 したがって 初めて地点Pに到達するまでの距離が8km になるような経路 の総数はスセソ 通りと求められる。 ① tttt→→ の解答群 + は左端にのみ並ばない 「←」は左端にも右端にも並ばない (第6回4) JUTUSA ① 「←」は右端にのみ並ばない

回答募集中 回答数: 0