学年

質問の種類

数学 高校生

(3) x,yをzを用いて表す、というところで、x=z、y=-zになるのがなぜかわかりません。①②の式からどのような変形をして、x,yをそれぞれzを用いて表すのですか?

対して ka +tb>1 が成り立つような実数kの値の範囲を求めよ。 【18 甲南大] 留内積の計算 数式と同じようにできる。 なお |f=da 1soo|2|||=2:1盟 3√3 2 |k+t6|>1 の両辺はともに正であるから,k+16>12 である。 ①から ka+2kta 6+t|b|²>1² ①と同値 よって f2+3√3kt+9k-1>0 2 ②がすべての実数について成り立つための必要十分条件は,tの2次方程式 f2+3√3kt+9k-1=0 の判別式をDとすると ここで D=(3√3k)2-4(9k2-1)=-9k²+4 D<0 L ベクト 求めると、 347 241 ならば、 2 2 D<0 から k<- <k 答 3'3 ■Check■■ 47 (1)2つのベクトル d = (1, 2), = (k, 4) に対して, a 2-a が 平行であるとき,kの値を求めよ。 また, 3d-b と a+ò が垂直であるとき, kの値を求めよ。 (2) ベクトル, が |a+6=11, |-6|=7 を満たすとき, 内積を求 めよ。 (3)空間の2つのベクトル a = (2,3, 1) = (1,2,3)の両方に垂直で大 きさが1のベクトルを求めよ。 348 1 積 OA ように (1) *349 周」 よ *344 (1)||=5,|6|=3,|a-26|=7 を満たすとする。このとき, 内積を求めよ。また, tが実数全体を動くとき, a +坊の最小値と, [類 15 関西学院大 ] そのときのtの値を求めよ。 (2)ベクトル,,こが+6+2=0,|4|=|6|=||=2を満たすとき,内積 の値と,とものなす角を求めよ。 98 ■ XI ベクトル [17 東京都市大] 350 る

解決済み 回答数: 1
数学 高校生

この問題の数列bnが等比数列となるための条件はの後の式が分かりません。どうして②の条件が 等比数列になるための条件なんですか?

0000 要 例題 47 分数形の漸化式 (2) 数列{an} が α1=4, an+1= 4an+8 an+6 で定められている。 16m= an-a an- とおく。 このとき, 数列 {bm} が等比数列となるようなα B (α>β) の値を求めよ。 (2) 数列{an} の一般項を求めよ。 本間も分数形の漸化式であるが, 誘導があるので,それに従って進めよう (1) bn+1= an+1-B an+1-a に与えられた漸化式を代入するとよい。 (2)(1)から,等比数列の問題に帰着される。 まず, 一般項6 を求める。 重要 46 485 1 出 章 ⑤種々の漸化式 ついて と変形できる 基本37 問題37 のように おき換えを利用 4an +8 辺のαを右辺 通分する。 0から。 答 (1) bn+1 an+1-B ・B an+6 = = an+1-a 4an+8 (4-β)an+8-6β a an+6 (4-a)an+8-6a_ (繁分数式) の扱い 分母, 分子に an+6を掛 8-6β an+ ( 4-B 4-B S = 4-a 8-6a ① ant 4-a けて整理する。 の分母を4-α 分 子を4-βでくくる。 ために, 数列 {bm} が等比数列となるための条件は )を断る。 から 8-6β 4-β =- -β, 8-6a 4-a D == a ② |_ ε bn = an-a an-β の右 島着。 よって,α,βは2次方程式8-6x=-x(4-x) の解であ り x2+2x-8=0を解いて x=2, -4 辺の分母分子をそれぞ れ比較。 (x-2)(x+4)=0 a>βから α=2, β=-4 (2) 4-β_ 4+4 4+4 - =4と ① ② から b+1=46 8-6β -=-β=4, 4-a 4-2 4-B 8-6α また b1= a+4 a1-2 =4 ゆえに b=44"-1=4" =-a=-2, 4-a 特性方 よって an+4 an-2 =4n ゆえに an= bn= 2(4"+2) 4"-1 an+4 an-2 (10+0 D-D D-T

解決済み 回答数: 1
数学 高校生

数学Ⅰの方程式の問題です。左写真の(1)(ⅲ)の問題で、解答にはx²-2x=tと置かれていたのですが、自分は右写真のように文字で置かずに解きました。そのときに解答では、文字でおいた後にtの範囲を求めていたのですが、自分の解き方の場合ではx²-2xの範囲を求めないといけないで... 続きを読む

69 68 第3章 2次関数 40 2次方程式の解とその判別 (1) 次の方程式を解け. (i)x2+4x-20 (ii)^-52+4=0 (iii) (x²-2x-4)(x²-2x+3)+6=0 (2) 2次方程式 x-4x+k=0 の解を判別せよ。 精講 (1) 2次方程式を解く (=解を求める)方法は次の2つです。 ① 因数分解した式) = 0 ② 解の公式を使う ②を使えば,因数分解できなくても解を求められますが,因数分解できる 式では,必ず因数分解する習慣をつけましょう. (2) 2次方程式を解くと, その解は次の3つのどれかになります。 ① 異なる2つの実数解 ② 実数の重解 ③実数解はない この3つのどれになるかを判断することを2次方程式の解を判別するとい います。 このとき, 判別式といわれる式を利用します。 解答 (1) (1) 解の公式より, x=-2±√60) (ii) 4-5x2+4=0 は (x²-1)(x²-4)=0 :.x2=1,4 よって, x=±1, ±2 tap 30- (i) (x²-2x-4)(x²-2x+3)+6=0 において x²-2x=t とおくと x²-2x をひとまとめ t=(x-1)2-1 だから, t≧-1 37 ポイント (t-4)(t+3)+6=0 .. t-t-6=0 .. (t-3)(t+2)=0 t≧-1 だから, t=3 |かけて-6, たして 1 となる2数を考 よって, x2-2x=3 (x-3)(x+1)=0 .x=-1,3 えると32 001 W

解決済み 回答数: 1
数学 高校生

なぜ青線部のことがいえるのですか?

18 第1章 数と式 標 問 6 式の値 ( 分数式) 19 解答 (1) 2x-y+z=0, x+2y+8z=0より (東亜大) x=-2z,y=-3z よって, ry+y+zx_(-2z)(-3z)+(-3zz+z(-2z) x²+ y²+z2 (-2z)+(-3z)2+22 分数式を1つの文字で表す 2式を連立して, x,yについ て解く (1) 実数x, y, はいずれも0でなく, 2x-y+z=0とx+2y+8z=0 の xy+yz+zx 両方を満たすとき x² + y²+z² の値を求めよ. ytz_z+x+y=mとするときの値を求めよ. (2) 2 I y また,(1+2) (1+72)(1+/-) の値を求めよ. (6-3-2)z2 1 = (東海大) (4+9+1)2214 (2) I 精講 (1) 文字が3つありますが 解法のプロセス 2x-y+z=0, x+2y+8z=0 を利用して, 1つの文字で残り2つの文字を表現 (1) 2c-y+z=0, x+2y+8z=0 xy+yz+zx し、 に代入します. x²+ y²+z² を連立してz,yをを用い て表す. (2) 分数式の値を求める際,その値をとで もおいて考えていくとラクなことが多いのです. ↓ my+yz+x この問題では、問題文でmとおいてあります. +2+2に代入する. I y+z_z+x+y=mより y 2 y+z=mx ①, z+x=my..... ② x+y=mz... ③ ①+②+③ より 2(x+y+z)=m(x+y+z) よって, (x+y+z) (m-2)=0 したがって, x+y+z=0 またはm=2 x+y+z=0のとき, y+z=1=-1 I y+z. =m より y+z=mx ...... ① I +1=mより2+x=my....... ② y 同様に, z+x= y=-1, y y x+y=-=-1 2 2 x+y=mよりx+y=mz... ③ 2 y+z=-x を代入 m=2となるx, y, zが存在 することを主張している なお、m=2のとき ①②よ りェyが得られ、同様に ② ③ より y=z が得られ 解法のプロセス よって, m=-1 y+z_z+x+y=m (2) 2 I y また,r=y=z (≠0) のとき =2となる? したがって,m=-1,2 を y+z=m, 2+1=m y (1+1/2)(1+7)(1+2/)=ty.y+zz+p y Z ytzztexty る I y 2 =m³ =-1, 8 として, ① ② ③を連立してmを求めます. こ のとき,x,y,zの文字を消去していくのも1つ の方針ですが,x,y,zが同等の扱いを受けてい るので(ryやzに対して特別な扱いを受けて いない), x, y, zの対称性を利用して処理するの が簡単でしょう (標問9参照)。 ①+②+③ をつくると 2(x+y+z)=m(x+y+z) (x+y+z) (m-2)=0 が得られます. これから x+y+z=0 またはm=2 となります. I x+y=m 2 と扱って [y+z=mx z+x=my x+y=mz とする. 演習問題 ↓ 6-1 x+4y=y-3.z≠0のとき、 2x²-xy-y² この連立方程式を解く、 2x2+xy+y2 の値を求めよ. (山梨学院大) IC (6-2x+y=y+z=2のとき、この式の値を求めよ。 (札幌大) y 章 1

解決済み 回答数: 1