学年

質問の種類

生物 高校生

5番が正しい理由がさっぱわからないので教えてください

10000 206 出典:立行政法人統計センタ 1400 SSDSE-C-2021により作 の階級に含まれる。 また、四分位範囲として 47 226 0000円以上 22000円未満 000円以上 28000円未満 28 (Coo 29500 牛肉の年間支出金額 (2018年~2020年の平均値) 1500 34000 40000 (円) (円) 畿 (7市) 中国・四国 (9市), 九州 沖縄 (8市) の6つの地域に分けたときの箱ひげ図である。 のデータについて 47 市を北海道・東北 (7市) 関東 (7市) 中部 (9市) 近 40000- 38000- 36000- 34000- 32000- 30000- 28000- 26000- 24000- 22000- 20000- 18000- 16000 14000- 28000 12000- 10000- 北海道 ・東北 関東 中部 近畿 中国 九州 ・四国 ・沖縄 図2/牛肉の地域別年間支出金額 (2018年~2020年の平均値) (出典: 独立行政法人統計センターSSDSE-C-2021により作成) と計量 +cos 150° tan 30° √3 =0 2)+(cos0-√2 sin 0 ) cos0 + 2 cos' 20-2√2 sin 0 cos 0+2 sin² 3 sin0 0 であるから 26 データの 分析。 (2) 図1と図2から読み取れることとして,次の①~⑤のうち、正しいものは と ウ 本気である。 なお、各市の年間支出金額はすべて異なる。 H オ の解答群 (解答の順序は問わない。) 29500 ¥7500 15000 20 26500 14500 13000 - 2650 145 29500 -14500 ウ 15000 =2√6 30°-0) ア | の階級は、6つの地域の市をそれぞれ1つ以上含む。 6つの地域の中央値のうち、図1のデータの中央値に最も近いのは関東である。 6つの地域について、どの地域の四分位範囲も、図1のデータの四分位範囲より小さい。 近畿は100g当たりの牛肉の価格が他の地域よりも高い。 近畿で30000円未満の市は1つである。 16000円未満の市のうち, ちょうど半分が北海道・東北の市である。 6 1+2/6 り (配点 10 ) AB in C CA: AE

回答募集中 回答数: 0
数学 高校生

この問題の(3)の解説(2ページの丸で囲んでる部分がよくわからないです… 何故Xの得点は(2-5)と(8-5)ばかりなのでしょうか? 3点や4点もグラフにあるのに何故省かれているのでしょう、、 教えてください!

step2 鉄則を使う 下の表Ⅰは、20人の生徒が行った2つのゲームX,Yの得点結果をまとめたものである。 表の横軸はXの得 点を,縦軸はYの得点を表し、表中の数値は,Xの得点とYの得点の組み合わせに対応する人数を表している。 ただし,得点は0以上10以下の整数値をとり、空欄は0人であることを表している。例えば,Xの得点が 6点でYの得点が7点である生徒の人数は2である。 また,IIはXとYの得点の平均値と分散をまとめたものである。 ただし, 表の数値はすべて正確な値であり、 四捨五入されていない。 以下,小数の形で解答する場合は、指定された桁まで解答せよ。 #I 表Ⅱ (点) 10 X Y 9 1 8 7 2 232211 2 平均値 A 6 2 1 分散 4.00 7.0 B Y 5 4 1 3 2 1 0 012345 6 7 8 9 10 X (点) (1)20人のうち, Xの得点が5点の生徒はア人であり, Yの得点がXの得点以下の生徒はイ人である。 . (2)20人について, Xの得点の平均値Aはウ エ点であり,Yの得点の分散Bの値はオ である。 カキ (3)20人のうち, Xの得点が平均値 ウ エ点と異なり,かつ, Yの得点も平均値 7.0点と異なる生徒 はク人である。 20人について, Xの得点とYの得点の相関係数の値はケコサシである。 ア( ( ウ エ オ( )力( キ ク( ケ ( ) コ サ ) シ(

回答募集中 回答数: 0
数学 中学生

学校の宿題で、調べた市の2月の最高気温をデータ化して自分の意見をまとめるという宿題が出たのですが、自分の意見に自信が無いです。写真の1枚目は私が書いたプリントで、2枚目は書き方のヒントです。 私が考えたのは ⑥12% 「0°以上12℃未満」に含まれる日数は100年前と比... 続きを読む

45 40 35 30 25 20 15 10 5 1学年 7章 まとめ 0 ① 階級の幅を3℃にして, 1920年~1924年と2020年~2024年の度数分布表をつくる。 度数(日) 階級 (℃) 階級値 (℃) 12 15 O ~3 3 ② 上の度数分布表をもとにして, それぞれのヒストグラムをかき度数折れ線をかく。 (日) 1920年~1924年 50 市の2月の最高気温について 0 6 ~9 18~21 21~24 24~27 計 3 ~15 ~18. 6 1年組番 名前 4.5 7.5 10.5 13.5 16.5 19.5 22.5 25.5 9 12 15 18 21 24 27 (°C) (日) 50 45 40 35 30 25 20 15 10 1920年~1924年 5 14 41 46 30 q 0 0 142 0 3 6 9 2020年~2024年 12 2020年~2024年 5 18 37 30 18 12 10 141 15 18 21 24 27 (°C) ③ 度数分布表をもとにして, 中央値をふくんでいる階級をそれぞれ求める。 1920年~1924年 9 °℃ 2020年~2024年 28 I 12℃以上 ④ 度数分布表をもとにして, それぞれの最頻値,平均値を求める。 ※小数第二位を四捨五入して、小数第一位で求める。 1920年~1924年 予想 2020年~2024年 1920年~1924年 12℃未満 未満 _% 15°C ⑤ 「0℃以上12℃未満」にふくまれる日数は, それぞれ全体の何%か? 最頻値 10.5°C 10.5°C 72% 42% ⑥ ①~⑤までで求めたことをもとにして, 2120年~2124年の5年間では「0℃以上12℃未満」に占める日数の割 合は全体の何%になると予想されるだろうか。 また、 なぜそう考えたのか ①~⑤の結果をもとに書いてみよう。 平均値 10.1°C 13.9°C 2020年~2024年 ⑥のようになっていくと考えた理由を、 現在の環境問題と照らし合わせて説明してみよう。

回答募集中 回答数: 0