学年

質問の種類

数学 高校生

場合分けの問題で、なぜ片方だけ=が あるのですか?わかる方お願いします🤲

00000 重要 例 224 区間に文字を含む3次関数の最大・最小 f(x)=x-6x+9x とする。 区間 a≦x≦a+1におけるf(x)の最大値を 求めよ。 「指針 この例題は、区間の幅が1 (一定)で,区間が動くタイプである。 まず, y=f(x)のグラフをかく。次に,区間 a≦x≦a+1をx軸上で左側から移動し ながら, f(x) の最大値を考える。 場合分けをするときは,次のことに注意する。 A 区間で単調増加なら、 区間の右端で最大。 ® 区間で単調減少なら、 区間の左端で最大。 両極値をとるxの値がともに区間に含まれることはないから © 区間内に極大となるxの値があるとき, 極大となるxで最大。 ① 区間内に極小となるxの値があるとき, 区間の両端のうちf(x)の値が大きい方 で最大→区間の両端で値が等しくなる場合が境目となる。すなわち、 により場合分け。 f(a)/(a+1)となると① Max ① B A 最大 f'(x)=3x2-12x+9 =(x-1)(x-3) f'(x)=0 とすると k=1, 3 f(x) の増減表は次のようになる。 1 3 2- [拡大] 小 4. 0 f'(x) + f(x) > + 01 [1] [a+1 <1 すなわち α<0の [1] y とぎ 4F f(x)はx=g+1で最大となり M(a) =f(a+1) =(a+1)³-6(a+1)² +9(a+1) =a²³-3a²+4 よって, y=f(x)のグラフは右上の図のようになる。 ゆえに、f(x)のa≦x≦a+1 における最大値 M (α) は, 次 のようになる。 a M y=f(x) | 3 -最大 a+1 最大 3 または | 解答の場合分けの位置のイ メージ YA y=f(x) | 121131 a 01 Ca+1 a 3 a+11 <指針のA [区間で単調増 加で,右端で最大] の場 合。 [21] すなわち 0≦a <1のとき f(x)はx=1で最大となり M(a)=f(1)=4 次に, 2 <<3のとき, (a)=f(a+1) とすると a³-6a²+9a=a³-3a²+4 3a²-9a+4=0 ゆえに よって 検討 2-3 2<u <3と5<√33 <6に注意して 9+√33 のとき [3] 1≦a<- 6 f(x)はx=αで最大となり Q= M(a)=f(a)=a³-6a²+9a [4] 9+√33 αのとき 6 f(x)はx=a+1 で最大となり 以上から [2]y M(a)=f(a+1)=a³-3a²+4 -(-9) ± √(-9)²-4·3·4_9±√33 224 よ。 al 最大 [3]y+ 6 9+√33 6 [4]ya 最大 0 1. @ 3 a 05 1 9+√33 6 a<0, 0≦a <1のとき M (α) = 4 .9+√33 [1]≦a[k] [] 6 3 3次関数のグラフの対称性に関する注意 p.344 の参考事項で述べたように, 3次関数のグ ラフは点対称な図形であるが, 線対称な図形で はない。 すなわち, 3次関数がx=pで極値をと るとき, 3次関数のグラフは直線x=に関して 対称ではないことに注意しよう。 「上の解答のαの値を a+(a+1) 2 =3から a+1 a a+1 指針C [区間内に極大 となるxの値を含み、そ のxの値で最大] の場合、 最大 aa+1 a+1 ―≦a のとき M (a)=α²-3a²+4 指針の区間で単調減 で、左端で最大] また ① [区間内に極小とな るxの値がある] のうち 区間の左端で最大の場合。 のとき M(α)=α²-6a²+9a <指針の① [区間内に極小 となるxの値がある ] [の うち、区間の右端で最大 の場合。 または指針の [区間で単調増加で、 右 で最大] の場合。 357 3次関数の グラフ 「対称ではない 放物線 (線)対称 6 a=1 としてはダメ! ] 2 なお, 放物線は軸に関して対称である。 このことと混同しないようにしておこう。 f(x)=x-3x²-9x とする。 区間 t≦x≦t+2におけるf(x)の最小値m(t) を求め 2 最大値・最小値方程式・不等式

回答募集中 回答数: 0
化学 高校生

問2が全く分かりません、まずなぜ、プロパンのcを中心に対称しているのですか?丸にclと書いてあるが、一つだけでいいのか?その次に+clをやった後の三種と二種ってどこにclをやったらいいんですか? 問3はなぜ、Haが6個でHbが2個なんですか? 質問長くなってすみません。教え... 続きを読む

AMR Sonce 天然ガスや石油の主要な成分であるアルカンは、 やかに反応してアルカンの水素原子が塩素原子に置換された化合物が得 である。しかし、アルカンと塩素の混合気体に紫外光を照射 問1 メタンと塩素の反応によって、メタンの一塩素置換生成物である。 ロロメタンが生成する反応を化学反応式で示せ。 プロパンを同様に反応させたところ、 あるAおよびBが得られた。 AとBを分離し, 反応させると、Aからは3種類の二塩素置換生成物が得られ、Bからは 2種類の二塩素置換生成物が得られた。 AとBの構造式を書け。また、 から得られた3種類の二塩素置換生成物の構造式も書け。 間3 プロパンの8個の水素原子のうち、 置換されてAを与える水素原子 H. 置換されてBを与える水素原子をHとする。 H. とHの水素原 子1個あたりの置換されやすさが同じであると仮定したとき、プロパン | と塩素の反応で生成する AとBの物質量の比はいくつと予想されるか。| 簡単な整数比で表せ。 14 実際にプロパンと塩素の反応を行って生成したAとBの物質量の比 AH』に対して何倍置換されやすいといえるか, 有効数字2桁で答え を調べたところ, 9:11であった。 水素原子1個あたりで比較すると、 (東京大) C-C-C [ プロバン 一般に化学的に安売る 2 それぞれをさらに塩素と 解説 問1 間違えた人は, p.56.57をもう一度よく読もう。 問2 プロパンに対してC骨格の対称性に注意しながら, CI原子を1つずつ、 付けていくと, しなぜこうなって CI CI (ECZNE OFC C-C-C + c-c-c, c-c-c 対称 xにCI O C-C-C x Q +Cl 同じ ここを中心に対称 Cをネ対しているのね 3種 CI + c-c-c, c-c-c CI CI CI 2種 016-0

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

電磁気学 問題3.1と3.2わかりません。解説お願いします🙇‍♀️

長い R 1.3 ガウスの法則 例題 3 ・一様に帯電した平面とガウスの法則 面密度」の電荷が一様に分布している無限に広い平面のまわりの電界を求め よ。 となる。よって 6 20 E=- E0 E 000 図1.10 ヒント】 電荷の分布する平面に垂直な円筒に対してガウスの法則を用いる。 【解答】 図1.10に示すような, 電荷のある平面に垂直な円筒を考え,これに対して ガウスの法則を適用する.ただし,この円筒の両底面は電荷の分布する面から等しい 距離にあるとする。 対称性より、電界は円筒の上下両面に垂直で,そこでの電界の大 きさは等しい。また,電界は円筒の側面とは平行の向きとなるので、円筒の底面積を S とすると, ガウスの法則は fe·ds=2E.S=OS - E to 6 13 080000 問題∞∞ fs of foo sofs of 3.1 例題3において, 面密度の電荷が一様に分布している無限に広い平面から 距離だけ離れた点Pにおける電界の大きさ o/2c のうち, 半分は点Pから距離 が20以内にある電荷によるものであることを示せ . 3.2 無限に広い2枚の平面が平行に置かれ, それぞれ面密度。および - で帯電 している。 平面によって分けられた各領域での電界を求めよ. I II III 0 3.3 電荷を帯びた薄板の表面付近において,電界の大きさを測定したところ5× 10 N/C であった。 電荷の面密度はいくらか. 31

回答募集中 回答数: 0
数学 高校生

この解き方はなぜダメなんですか?

3 10 経路の問題— 右図のような格子状の街路がある. A点からB点まで最短距離で移 動する.図の格子点で,右へ行く確率は 1 点からB点まで行くとき, P点, Q点を通って行く確率をそれぞれ求め ただし, ひとつの方向しか行けない場合は確率1でその方向に進む.A よ. (類 中部大・工) A 経路1つ1つは同様に確からしくない この問題で注意することは 「ひとつの方向しか行けない場合(右図の○印の点)は確率1でその方向に 「進む」である. このため,経路の1つ1つは同様に確からしくならない. 例えば右図の R1 のように移動する確率は,○印の点を5回,それ以外の 点は(A を含めて) 4 回通るので,15×(1/2)" であり, R2 のように移動する Xが上端のときx+ X1Z LIC 4 do 1 y 2 YI これを用いて各点に到達する確率を書き こんでいくと右のようになるから、答えは P... - 2' 解答 下図の点X, Yに到達する確率がそれぞれx,yのとき, Zに到達する確率は, Y は右端でない点 1 12%,それ以外のとき 1/12 (x+y)である. Q... 35 128 確率は1°× (12) である。ここでは書きこみ方式(場合の数の O10 参照) で解いてみるが, 〇印の点を何回通るかを考えて計算してもよい。 必ずBに到達する 上側と右側がカベになっているので,必ずBに到達する. つまり,「Q を通っ てBに行く確率」 は 「Qを通る確率」 であり, QBは考える必要がない. 問題文に惑わされないよう にしよう. X 2 x Iz y 2 Y 1 16 1 8 1 4 A 6 32 4 16 上に行く確率は -00/00. 3 2 4 1 2 22 64 10 32 6 16 30/00 8 to (1+5) 1 4 10 演習題 (解答は p.52) 右の図のように東西に4本, 南北に6本の道があり,各区画 は正方形である.P,Qの二人はそれぞれA地点,B地点を同 時に同じ速さで出発し、 最短距離の道順を取ってB地点, A地 点に向かった. ただし, 2通りの進み方がある交差点では, そ 12/2 であるとする. P.QがC地点で れぞれの選び方の確率は 64 128 20 64 P 10 32 4 16 1 8 西 A Q 1 15 64 15 32 16 とする. 北 南 ●B 35 128 1(4-09114 C R1 出会う確率は(1) である.また, どこか途中で出会う確率は(2) である.. B R2 東 (北里大薬) P Q B B (2) は, 出会う地点をま ず求める。 図の対称性も 活用したい . 43

回答募集中 回答数: 0
数学 高校生

赤丸の部分の長さ(座標)はどうやって出すんですか?

00000 重要 例題284 座標空間における回転体の体積 (2) 空間内の3点O(0, 0, 0),A(1, 0, 0),B(1,1,0)を頂点とする三角形 OAB をx軸の周りに1回転させてできる円錐をVとする。円錐Vをy軸の周 りに回転させてできる立体の体積を求めよ。 〔大阪大〕 重要 283 指針 立体のようすがイメージしにくいので、断面積を考える。 Vの側面上の点を P(x,y,z),Q(x, 0, 0) とすると, △OPQはOQ=PQの直角二等辺三角形であるから 関係 式をx,y,zで表してVの側面の方程式を求める。 ②Vの平面y=tによる切り口は,右図のような曲線の一部 と直線x=1で囲まれた図形で, これをy軸の周りに1回転 させるから、題意の立体の平面y=tによる切断面はドーナ ツ状の図形になる (解答の図参照)。この図形の面積は (外側の円の面積) (内側の円の面積)・・・・・・・・ 解答 円錐Vの側面上の点をP(x, y, z) (0≦x≦1, y|≦1) とする。 A 0 円 V上の点Pと点Q(x, 0, 0)の距離はxであるから③ (x-x)2+y2+z^=x2 よって x2-2²=y2(0≦x≦1) ZA 円錐Vの平面y=t(-1≦t≦1) によ る切り口は, 曲線 C: x²-22=12 (0≦x≦1) と直線x=1で囲まれた図 形となる。 点(0, 0) , この図形内の点との 距離の最大値は √1²+(√1-t²)² = √2-1² |t| √1-12 (0, t,0) 最大 \/c It 1 x 小 最小値は したがって, 円錐Vをy軸の周りに1回転させてできた立体の、 平面y=tによる切断面は右の図のようになる。 この図形の面積は π(√2-1²) ²-n|t|²=2(1-t²)π よって 求める立体の体積は S_,2(1-12)zdt=-2x$_,(t+1)(t-1)dt 8 = -2x - (-). (1-(-1))³= - - 7 =-2π・ 3 [参考] 対称性を利用して, 21 2 (1-t)rdt を計算してもよい。 p"+e=" 1 B AZ -X- Q(x,00 √2-12 -||- (0, t,0) P(x,y,z) A 一母線 √2-1² -√2-t²-t X 'B √√2-12 sysloga 75 76th 461 8章 40 体 積

回答募集中 回答数: 0
数学 高校生

赤丸の部分の長さ(座標)はどうやって出すんですか?

00000 重要 例題284 座標空間における回転体の体積 (2) 空間内の3点O(0, 0, 0),A(1, 0, 0),B(1,1,0)を頂点とする三角形 OAB をx軸の周りに1回転させてできる円錐をVとする。円錐Vをy軸の周 りに回転させてできる立体の体積を求めよ。 〔大阪大〕 重要 283 指針 立体のようすがイメージしにくいので、断面積を考える。 Vの側面上の点を P(x,y,z),Q(x, 0, 0) とすると, △OPQはOQ=PQの直角二等辺三角形であるから 関係 式をx,y,zで表してVの側面の方程式を求める。 ②Vの平面y=tによる切り口は,右図のような曲線の一部 と直線x=1で囲まれた図形で, これをy軸の周りに1回転 させるから、題意の立体の平面y=tによる切断面はドーナ ツ状の図形になる (解答の図参照)。この図形の面積は (外側の円の面積) (内側の円の面積)・・・・・・・・ 解答 円錐Vの側面上の点をP(x, y, z) (0≦x≦1, y|≦1) とする。 A 0 円 V上の点Pと点Q(x, 0, 0)の距離はxであるから③ (x-x)2+y2+z^=x2 よって x2-2²=y2(0≦x≦1) ZA 円錐Vの平面y=t(-1≦t≦1) によ る切り口は, 曲線 C: x²-22=12 (0≦x≦1) と直線x=1で囲まれた図 形となる。 点(0, 0) , この図形内の点との 距離の最大値は √1²+(√1-t²)² = √2-1² |t| √1-12 (0, t,0) 最大 \/c It 1 x 小 最小値は したがって, 円錐Vをy軸の周りに1回転させてできた立体の、 平面y=tによる切断面は右の図のようになる。 この図形の面積は π(√2-1²) ²-n|t|²=2(1-t²)π よって 求める立体の体積は S_,2(1-12)zdt=-2x$_,(t+1)(t-1)dt 8 = -2x - (-). (1-(-1))³= - - 7 =-2π・ 3 [参考] 対称性を利用して, 21 2 (1-t)rdt を計算してもよい。 p"+e=" 1 B AZ -X- Q(x,00 √2-12 -||- (0, t,0) P(x,y,z) A 一母線 √2-1² -√2-t²-t X 'B √√2-12 sysloga 75 76th 461 8章 40 体 積

回答募集中 回答数: 0