学年

質問の種類

物理 高校生

この線で引いた部分は張力Tと常に釣り合ってますよね?

教科書で調べると、振れ角が小さい振り子の運動は単振動とみなせ,その周期 の理論式には重力加速度の大きさも関わることがわかった。 そのことを確認する ためには, 重力加速度の大きさが異なるいくつかの地点で実験する必要がある。 水平な面となす角度めのなめらかな斜面上で振り子をつくり, Φを変えて振り そこで、教室内で同様の効果を得ることができる実験方法として, 図4のように, 子の周期を測定する実験を考えてみた。 「軽くて伸び縮みしない糸の一端を斜面上に固定し,糸の他端に小球を取り付け る。そして、糸がたるまないように, 小球が静止しているときの糸の方向から糸 が 5°の角度をなす位置まで斜面上で小球を持ち上げて静かにはなし,斜面上で 振らせて振り子の周期を測定することをを変えて行う。空気抵抗は無視でき, 振り子の運動は単振動とみなせるものとし、重力加速度の大きさをg とする。 斜面 -5° Te 小球 水平な面 L 図 4 hgrinde n 問3 次の文章中の空欄 ア も適当なものを,後の①~⑧のうちから一つ選べ。 に入れる式と数値の組合せとして最 22 重力加速度の斜面に平行な方向の成分の大きさは ア である。 Φ=90° として振らせた振り子の周期を T90, Φ=30° として振らせた振り子の周期を L T30 T30 とすると, T90 イ となるはずである。 ア イ ① ② ④ ⑥ gsino gsino gsino gsino gcoso gcoso gcoso gcoso 1-2 12 12 √2 2 12 1 2

解決済み 回答数: 1
物理 高校生

なぜ右向きを正に運動方程式を立てるのかがわかりません 左に動くのになぜ左向きが正ではないのでしょうか?

(1) 図1のように質量の無視できるばねを鉛直につり下げる. 鉛直下向きを正としてy軸をと りばねが自然長であるときのばねの先端を原点とする. 大きさの無視できる質量mの物 体をばねの先端にとりつけると、位置y=I1-a で物体に働く重力とばねの復元方がつ り合い,物体は静止した.ただし,ばね定数を重力加速度の大きさを9とする。物体を下 方に引いて静かに手を離すと, 物体はy軸方向に y を中心とする単振動をはじめた.物体の 座標をy, 加速度をαy とすると, 運動方程式は I1-b と書ける. (2)次に図2のように、摩擦のある水平面上でばね定数kのばねの一端を固定し、他端に質量 mの物体をとりつける.物体の運動方向にx軸をとり ばねが自然長であるときの物体の位 置を原点Oにとる. 物体と水平面との間の静止摩擦係数!!.動摩擦係数は定数とする. こ こでは、物体の速さが0となるときは、物体に働く摩擦力として、最大で静止摩擦係数を用い た摩擦力が働くものとする. 位置x (0) まで物体を引いて静かに手を放すと, 物体はxがあ る値d以下のときには動かず,dより大きいときには滑り出した. dは I 2 と表される. 物体を位置xo(>d)まで引いて, 時刻 t = 0に静かに手を放すと物体は動き出し,位置 (0)ではじめて速さが0となった. この間の物体の運動方程式は、 物体の座標をx, 加速 度をα とすると. I3-a と書ける.この方程式を(1)の場合と比較すると, この運動は, I3-b を中心とする単振動である. x1 は x を用いて14-a と表される.x で物 体が静止し続けるためのxの最大値 Xは 14-b である. xc= 以下では,x > Xとする. 物体はx から再び動き出し, x2 ( d) で再び速さが0となっ また、この間の物体の運動方程式は I5-a と書け, x2 は x を用いて I5-b と表され る.その後,物体は再度 x2 から動き出したが, x(<0) で速さが0となり再び動き出すこと はなかった. 力学的エネルギーの変化が動摩擦力の行った仕事に等しいことを利用すると,x3 に達するまでに物体が運動した全行程の長さは, x0 と x3 を用いて 16-a と表すことがで きる。 物体の位置と時刻との関係をグラフで表すと図3の 16-b のようになる.

解決済み 回答数: 1
物理 高校生

解説のABの電荷から出ている矢印がなぜこの向きなるのか分かりません

点 【解説】 第1問 小問集合 ばねaとばねbのばね定数をそれぞれka, k とする。 a と 今はともに自然長からしだけ伸びているので、おもりAとBの それぞれの力のつり合い式は以下のようになる。 kad=mg, k₁d=2mg AとBの単振動の周期をTA, TB とすると, ばね振り子の周期 これらより, a に対するbのばね定数の比は、2となる。 2m ka 【ポイント】 公式より、T=2= 2 である。以上より, ばね振り子の周期 m TB 2ka T: 周期 問2 帯電体Aは正電荷, 帯電体Bは負電荷なので,いずれも点 の答③ ばね定数の 質量 0につくる電場の向きはAからBの向きである。AとBの電気 量の大きさ Qが等しく,AOとBOの距離もRで等しい。 がって,AとBがそれぞれ点0につくる電場の強さ EA, EBは 等しく,点電荷による電場の公式より,E=EQとなる。 点電荷による電場を 以上より, AとBが点0につくる電場は, それぞれの電場を合 成して,A から B の向きへ強さ 2kQとなる。 R2 R2 また, 一様な電場からAには左向きに, B には右向きに静電気 力がはたらくことになる。 よって, 一様な電場をかけた直後、リ ングは反時計回りに回転しはじめた。 ジ E=kQ 電気量 Qの点電荷から距離離れて いる点の電場の強さ 22 : クーロンの法則の比例定数 電場の向きは Q0 のとき電荷から 遠ざかる向き, Q <0 のとき電荷に近づ く向き。 一様な電場から +Q 受ける静電気力+Q A リング A 回転をはじめる方向 R EA EB B 一様な電場 B -Q 一様な電場から 受ける静電気力 2 の答 ① 3の答③ 変化を圧力と体積の関係を表すグラ A.Bの向き(?)

解決済み 回答数: 1