学年

質問の種類

数学 高校生

数学cについてです (3)番です f(x)のxにそのままh(x)を代入して、回答のようにh(x)= 以下 になっていて合ってはいたのですが、解説を見ると、解き方が全く違っていました 読んでみても、全く理解できません 逆関数がどうとかあありますが、何故このようなことをしなく... 続きを読む

31次分数関数 f(x)=- 2x+1 3x+1' 9(x)= 4x+2 5x+1 また,分数関数h(x)が, h(x) キー h(x)=(3) となる. とすると,(f(x))=f(g(x))=[2]]となる。 となる』に対して,f(h(x)) =xを満たすとき, 3 (山梨大医(後) (a~d は実数の定数)の形の関数を1次分数関数という. 1次分数関数とは 合成関数 ax+b cx+d (D) 合成関数g(f(x)) を求めるときは,g(x)のxをf(x)にしたものを計算すればよい. g(f(x)) は, gof(x) または (gof) (zr) と書くことがある. g (f(x)) f (g(x))は一般に異なる関 数である (一致することもある) f (x), g(x)が1次分数関数のとき,g (f(x)),f(g(x))は1次分 数関数になる.(ここでは、便宜上, 1次関数なども1次分数関数に含めている CECOME 逆関数について 1次分数関数の逆関数は1次分数関数になる.また,一般に,f(x)の逆関数を f-1(x) とすると,f-1(f(x))=xf(f-l(x)) =xである. 解答 2x+1 4- +2 3x+1 4(2x+1)+2(3x+1) 14x+6 (1) g(f(x))= = 2x+1 5(2x+1)+(3+1) 13x+6 5- +1 3x+1 (土) この問題では,定義域は考えな してよい。 =(1)77d 4x+2 2. +1 5x+1 (2) f(g(x))=- === 3. 4x+2 5x+1 +1 2(4x+2)+(5x+1) 13x+5 3(4x+2)+(5x+1) 17x+7 (3) f(x) の逆関数を f-1(x) とする. f-1(f(h(x)))=f(x)より h(x) =f-1(x)である。 2x+1 3x+1 =yとおいて』をyで表すと, 2x+1=y(3+1) より (3y-2)x=-y+1 x=y+1 3y-2 [ェとyを入れかえて] h(x)=-x+1 3x-2 (1)と(2)は異なる. この式を省略し,f(h(x)) = だからん(x) =f-1 (x) と書い さもかまわないだろう。 h(x)=-3(3x-2) h(x)=- (これが値域) 2/23 3 3 演習題(解答は p.89 ) -1 <x<1を定義域とする関数f(m) エーカ

解決済み 回答数: 1
数学 高校生

マーカーの部分の式の変形が分かりません。

366 基本例題 219 分数関数の不定積分 次の不定積分を求めよ。 x+5 (1) x2-1 Sx³+x dx (2) -dx (3) x²+x-2 0000 S x (2x-1)dx p.365 基本 (分母) 指針 被積分関数が (分母) 形 [p.360 基本例題 214 (3)] ではないことに注意。 SE (1)被積分関数は (分子の次数)(分母の次数) であるから 分子の次数を下げる。 x3+x_x(x2-1)+2x 2x つまり =x+ x2-1 2-1 x2-1 のように変形する。 (分母) そして, の式は の形であることに着目。 (分母) (2) 被積分関数は分母がx'+x-2=(x-1)(x+2) 因数分解できるから、部分分数に 解することを考える。 x+5 x2+x-2 b a + x-1 x+2 とおき,これをxの恒等式とみて, a, b の値を決める (3) 分母が (ax+b)” の形であるから, 2x-1=t とおく。 千 【CHART 分数関数の 分子の次数を下げる 部分分数に分解する 不定積分 13 分母が (ax+b)” の形ならax+b=t とおく 解答 Sx²+xdx=√(x+ = 2x )dx=x+log|x²-1|+C c+ (1) x² = 1 2 11 (2) Sx+5_zdx=(x-1)(x+2)dx= (2) x-1 x+2 () d x ( * ) =2log|x-1|-log|x+2/+C=th(/ (3)2x-1=t とおくと x= (x-1)² =log +C |x+2| t+1 5(2x+1)dx= (2x-1)+ dx= t+1 1 1 2 dt= +4 2 (2 dx=dt +1) dt nia t-2 ++++(--)+c =-1 24(3+2)+C= -(3t+2)+C=-- by 2 6x-1 +C 24(2x-1) ■分子 x+x を分母 割ると 商 x, 余り (*) 指針の(2)の分数式 x+5=α(x+2)+(x- a+b=1, 2a-b よって a=2, b=- またはx=1, -2を してα, bの値を求 よい。 なお、部分分 については、 「改訂版 ト式基礎からの数判 p.28, 36 を参照。 fxdx= xa+1 ・+0 a+1 (ただし [(2) 茨城大(3) (4) 3. 練習 次の不定積分を求めよ。 ② 219 (x+2xdx (2) x dx (3) 4x2+x+1 -dx

解決済み 回答数: 1