学年

質問の種類

数学 高校生

(2)の問題で解がともに1より小さいときなぜa-1+b-1が0より小さくなるのか理解できません またなぜa-1 b-1と置くのでしょうか

x2-4 x x x2-4 B 2 x-2 x X x ÷ x (x+2)(x-2) x-2 x 北 x-2 x × x-2 =x+2 よって (2) HC (x-1) xx4(x+2)(x-2) x- X 別解 B 2 x-2 1. 1- xx X x =x+2 x-2 3 2次方程式2mx+2m²-5=0が,次のような異なる2つの解をもつとき,定数の値の範囲を求めよ。 【重要】 (1) ともに1より大きい (2) ともに1より小さい この2次方程式の2解をα, B, 判別式をDとする。 1/2=(m)-1-(2m²-5)=m+5=-(m+√5)(m-√5) また,解と係数の関係により α+β=2m, aβ=2m²-5 (1) 方程式が条件を満たすのは,次が成り立つときである。 D>0で, AAI 直線 よ ①ゆよ y (-1)+(β−1)>0 かつ(α-1XB-1)>0 D>0より -(m+√5)(m-√5)>0√5 <<√5 ... ① また (α-1)+(β-1)=(a+β)-2=2m-2 (α-1)β-1)=αβ-(a+β)+1=(2m²-5)-2m+1=2(m-m-2)=2(m+1Xm-2) *E**** (α-1XB-1)>0より2(m+1Xm-2)>0 (−1)+(β-1)>0より 2m-2>0 よってm>1 よって効く-1,2m ③ ① ② ③ より 2<<√5 (2) 方程式が条件を満たすのは,次が成り立つときである。 D>0で, (-1)+(β−1)<0 かつ (α-1Xβ-1)>0 D>0より -√5cm<√5 (−1)+(β−1)<0 より 2m-2<0 よって1 (a-1X8-1)>0) m<-1, 2<m (3) ① ② ③ の共通範囲を求めて -√5 <<-1 次の3次方程式を解け 4x+8=0 P(x) =42+8 とすると P(2) =23-4-23+8=0 *** 0 -√5 -1 1 2√√5 m -√5-1 D- 12.5m x よって、P(x) は x2 を因数にもち P(x)=(x-2)(x-2x-4)

回答募集中 回答数: 0
数学 高校生

この、右のページでやっていることが、なぜ成り立つかわかりません

370 340 第9章 整数の性質 不定方程式 y 次のような方程式を考えてみます. -2231x+409y=1 2231x+409y=1 ...... (*) これを満たす実数x、yの組は無数に存在しま す.実際,この式を 1 409 この直線上すべての 点(x,y) が解となる 1 2231 1 y=-- x+· 2231 409 409 -x と変形すると,これはry 平面上の直線となるの で,この直線上のすべての点(x,y) がこの方程式の解となるわけです. 一般に,文字の数が等号の数より多い方程式は解を定めることができません。 このような方程式のことを不定方程式と呼びます.特に,(*)のようにxy の一次式で表されるような不定方程式を一次不定方程式と呼びます. さて,ここで考えたいのは次のことです. 不定方程式 2231x+409y=1 ......(*) は りがともに整数であるような解(整数解)を持つだろうか? これは意外に難しい問題です。 実数の範囲では無数に解を持ったとしても 整数の範囲では解を持つかどうかすらアヤシイのです. 結論から先に言えば (*)の整数解は存在する のです.では,それをどうやって示せばいいのでしょう. 妖怪が存在すること を示す最もストレートな方法は,妖怪を捕まえて連れてくることです. それと 同じで,整数解の存在を示す一番の方法は、 具体的に整数解を作ってみせるこ とです.ここで役立つのが,先ほど扱ったユークリッドの互除法なのです. (*)のxyの係数 2231 と 409 に注目し, これをユークリッドの互除法の 要領で「割り算」 していきましょう. すると, 3段階目で余りに1が現れます. 2231=409×5+186 ......① 409=186×2+37 186=37×5+1 1が現れた! ...... 2 余りに1が現れたということは, 2つの数の最大公約数は 1 つまり2数は 互いに素であるということです. これはとても重要なポイントなので、頭に入 ておいてください 341 ことは,これらの式を逆にたどるよ にして1を元の2数を用いて表す」 ことです。 具体的には,次のような作 になります。 ⑦→ ④→ ← 1=186-37 × 5 ③ より =409×(-5)+186 × 11 186-409-186×2)×5②より37=409-186×2 =409×(-5)+(2231-409×5)×11-0) =2231×11+409 × (-60) - 186-231-409×5 まず、③により1が 「186と37」 を用いて表され(ア), そこに②を使うと 「409 と 186」 を用いて表され(イ), さらに①を使うと1が 「2231409 」 を用いて表されます(ウ) ウの式は,まさに(*)の整数解 (の1つ)が であることを教えてくれます。 x=11,y=-60 さて、先ほど注意したように,このようなことができたのは, そもそも の係数 2231 409 の最大公約数が 1 つまり互いに素であったからです。 つまり、一般に次のことが成り立つことがわかるのです. 不定方程式の整数解 bが互いに素な整数であるとき 1次不定方程式 ax+by=1 は整数解を持つ ユークリッドの互除法を用いれば, 一次不定方程式の整数解を具体的に作り 出すことができます.ただし,このやり方で見つかる整数解は、あくまで不定 方程式の整数解 「の1つ」であり,それがすべての解であるわけでも、あるい は最もシンプルな解であるわけでもないことには注意してください。 当然次なる興味は,1次不定方程式の「すべての整数解」を求めることは きないかということになります.この「すべての整数解」のことを次 定方程式の一般解といいます。その求め方は後ほど詳しく説明しますが、実 「すべての」 整数解を求めるためには, 少なくとも「1つの」 整数解を自 求めなければなりません.そこで,まずは先ほどの作業で「1つの」整数 求める練習をしっかりとしておきましょう。

回答募集中 回答数: 0
数学 高校生

直線束の考え方がよく分かりません 87ページの内容を説明して頂きたいです😭 その上で、例題13も説明して頂きたいです

束の考え方 1つの共有点をもつような2つの直線 ax+by+c=0 ax+by+c=0 ...... ② 87 があるとします.ここで、①の式に②の式をを倍して足した新しい式 (ax+by+c)+k(a'x + b'y + c') = 0 を作ってみましょう.これもやはり直線の方程式になります。 ③の式から②の 式のk倍を引き算すれば① の式が作れるのですから, 「①と②」の式と「②と ③」 の式は同値です。つまり、図形的に見れば、 ①と②の2直線の交点と②と ③の2直線の交点は一致することになります。 一致する * このことより, ③は(kの値によらず) ①と②の交点を通る直線である ということがいえます. ③において, kの値をいろ いろと変化させてできる直線の集まりは一点で結わ れた直線の束に見えるので,直線束と呼ばれていま す. これを利用すると, 2直線の交点を通る直線を 実際に交点を求めることなく扱うことができるので とても便利です。 コメント んの値が動くと 直線が動く 直線束 第3章 この束には、②の直線は含まれません,これは, 「同値関係」を考えてみれ ばわかります. もし③が② に一致するならば, 「③と②の共有点の集合」は直 線 ②全体になってしまいますが,「①と②の共有点の集合」 は1点ですので、 同値であることに矛盾してしまうのです. 一方, ②の直線上にない点を (p,g) とすると,ap + b'y + c'≠0 ですので,③が(p, q) を通るようなkの 値を決めることができます (③ に (p, g) を代入したものはんの1次方程式にな るので,それを解けばいいのです) つまり,③は 「①と②の交点を通る ②以 「外のすべての直線」 を表せることがわかります.

回答募集中 回答数: 0
数学 高校生

(4)からまったくわかりません... 解説お願いします

Think 例題 153 総合問題 右の図は,生徒20人に行った 整理と分析 301 **** 点で図形の得点が5点である生徒の 人数は2人である. の結果をまとめたものである. 関数 の得点xを横軸に,図形の得点yを 縦軸にとっている.図の中の数値は xyの値の組に対応する人数を表し ている。 数と図形のテスト(ともに10点満点) 10 9 8 1 7 1 11 6 1 11 y 5 121 4 たとえば、関数の得点が7 3 1 22 1 2 2 1 各生徒の得点について, x+y の最大値と, x-yの最大値 を求めよ. 0 01234 5 6 7 8 9 10 X が S 5. (2)図をもとに,次の表を完成させよ.また,各テストの得点の平均値 を求めよ. 点(点) 0 1 2 3 4 5 6 7 8 9 10 2435 10 関数(人) 0002 図形(人) 012335231 (3)(2)の表を使って各テストの標準偏差を求めると, 関数は2.8点 図形は3.6点, 関数と図形の得点の共分散は2.55 であった. 関 数と図形の得点の相関係数の値を四捨五入して小数第2位まで求 めよ.ただし,√7=2.646 とする.A0.80 右の表は、別の5人の生徒 A, B, 5人の生徒 ABCDE C,D,Eに同じ問題のテストを行 った結果である. 5人の関数と図 形の得点の平均値は, それぞれ 20 165 関数の得点 7 4 6 9 4 6 図形の得点 5 4 5 6 5 人の得点の平均値と同じであった.20人にこの5人を加えた合計 25人の生徒に関する関数と図形の得点の相関係数Rの値を小数第 2位まで求めよ. (5)これらのテストの結果について、次の①~③は正しいといえるか、 ① 生徒 25人の得点について、関数と図形の平均値からの散らば り具合は同じである. ② 生徒 20人の関数と図形の得点の正の相関はやや強いが,A~ Eの5人が加わると正の相関は少し弱まる. ③ 生徒 25人の図形の得点が一律に1点上がれば,25人の関数と 図形の得点の相関係数の値はより大きくなる. 第5章

回答募集中 回答数: 0