学年

質問の種類

数学 高校生

この問題についてで、写真のことが成り立つので<BCM=<BCNとしてよいでしょうか?回答よろしくお願いします。

戦略 例題 座標平面の設定 ★★☆☆ AB=ACである二等辺三角形ABC を考える。辺 AB の中点を M とし, 辺 AB を延長した直線上に点Nを, AN:NB=2:1 となるようにとる。 このとき,∠BCM = ∠BCN となることを示せ。ただし,点Nは辺 AB 上にはないものとする。 AR (京都大) « Re Action 図形の証明問題は,文字が少なくなるように座標軸を決定せよ IB 例題 95 思考プロセス ・△ABC は AB AC の二等辺三角形 YA |対称性の利用 O ADJ A 対称軸をy軸に設定 ∠BCM と ∠BCN を考える BCをx軸上に設定して、 とすると、 M B C 0 x 関問 戦略 設定 2 直線 NC と MC の傾きを考える AN 95 解 直線 BC をx軸, 辺BCの中点を 原点にとる。 △ABC は AB AC であるから, A(0, 2a),B(-26,0), C(260) (a>0, 6 > 0) としても 一般性を失わない。 YA 34A 2a (8) M A(0, 4), B(-6, 0) のよう At に設定してもよいが,後で -2b BO (2) ① Mは線分ABの中点であり, N は 線分ABを2:1 に外分する点であ NO DA るから M(-b, a), N(-4b, -2a) 26 CABの中点Mを考えると M(-) 分数になってしまうか ら,Mの座標が分数とな らないようにした。 このとき,NC の傾きは m1 = 26-(-4) 36 0+(-2a) a A = 0-a a MCの傾き m2 は m2= 26-(-b) 3b よって, 2直線 NC と MCはx軸に関して対称であるから <BCM = ∠BCN 頭を (別解〕(座標を用いない証明) BM=α とおくと AB = 24, AN = 4a, AC=2a <BAC=0 とおくと, △AMCにおいて, 余弦定理により CM² = a² + (2a)2-2. a. 2acos = 5a² - 4a² cos BA 逆向きに考える ∠BCM = ∠BCN を示す。 CM:CN = MB:BN が示されればよい。 MB:BN=1:2より, CM:CN = 1:2 を示 したい。 また,△ANC において,余弦定理により11/07 CN2 = (4a)²+(2a)2-2.4a 2acos 08 A =20α²-16acost M FO 大 よって、CM:CN=1:4 より <BCM = ∠BCN CM:CN=1:28- したがって、角の二等分線と比の定理の逆により B C ② ① 練習 △OCD の外側にOCを1辺とする正方形 OABC と, ODを1辺とする正方形 このとき、 AD ⊥ CF であることを証明せよ。 (茨城大) 303 p.315 問題1

解決済み 回答数: 1
数学 高校生

(2)がわかりません 解説お願いします🙇‍♀️

446 基本 例画 24 数列の和と一般項, 部分数列 00000 |初項から第n項までの和Sn が 2n²-nとなる数列{an}について (1) 一般項 am を求めよ。 指針 ((2) 和α1+α+α+....+α2n-1 を求めよ。 (1)初項から第n項までの和S”と一般項αの関係は p.439 基本事項 4 基本 48 n≧2のとき Sm=a+az+. +an-1+an - Sn-i=a+az+. +an-1 Sn-Sn-1= an よって an=Sn-Sn-1 n=1のとき a1=Si 和Sがnの式で表された数列については,この公式を利用して一般項 αn を求める。 (2) 数列の和 ①まず一般項(第ん項) をんの式で表す 第1項 第2項,第3項, ......,第k項 a1, a3, a5, a2k-1 であるから, am に n=2k-1 を代入して第k項の式を求める なお,数列 a1, 3, 5, an-1 のように, 数列{a}からいくつかの項を取り除 いてできる数列を,{a} の部分数列という。 200 00 06816P 68 SA aɛ 08 AS 815 12 (6) 23 a=S-S1= (2n-n){2(n-1)-(n-1)}+8 S=2n²nであるから Sn1=2(n-1)2-(n-1) (1) n≧2のとき 解答 =4n-3 ・・・・・ ① また α=S=2.12-1=1 +s) +81 +2 ( 初項は特別扱い ことに注意 ここで, ① において n=1 とすると よって, n=1のときにも①は成り立つ。 したがって an=4n-3 1=4・1-3=1 ann≧1で1つの式に 表される。 (2) (1)より, a2k-1=4(2k-1)-3=8k-7であるから n nst) 0+s から aux-はan=4n-3にお 「いてぇに2k-1を代入。 a+as+as+…+azn-1=242k-1=2(8k-7) 3- k=1 k=1 =8.1m(n+1)-7n (Fn(4n-3) 11+(1-10) x nas-S [A Zk, 1 の公式を利用。 に浸 部めく 基4 数列Ⅰ・ 指針

解決済み 回答数: 1
数学 中学生

√42が無理数であることの証明についてです。 m=√42nなのでmが2よりも大きくなるのはわかるのですが、nがなぜ2よりも大きいといえるのかが分かりません。(青線部)教えてください。お願いします。

答 √42 が有理数であると仮定すると √42mm,nは自然数)と表される。 n =√42nとし、両辺を2乗すると m²=42n2... ① 結論を否定。 無理数でない ⇔有理数である m≧2.n≧2であるから,m, n を素因数分解したものをそ6<42くから。 れぞれ m=pip2.pk (P1, P2,, De は素数) n=gg....... (g1, Q2,, q は素数) とし、①に代入すると 2. 2. Di2DzDk2=2・3・7g2q2qi2 ここで,②の左辺の素因数の個数は 2k個 右辺の素因数の個数は 21+3個 の断り書きを忘れず に。 42=2・3・7 ② 偶数個。 奇数個。 すなわち、 同じ数が2通りに素因数分解されることになり、参考 ②で、2の素因数の 素因数分解の一意性に反する。 よって, 42 は有理数でない, すなわち無理数である。 個数が, 左辺は偶数個, 右辺は奇数個であること から矛盾を導いてもよい。 数学Ⅰの 「命題と証明」の単元においても,上の例題と同じような問題を背理法で証明する ことを学ぶが (p.80), そこでは,pg を 「1以外に正の公約数をもたない (互いに素であ 約数と倍数

解決済み 回答数: 1