学年

質問の種類

地学 高校生

地学基礎の問題です! 問2の向きの考え方を わかりやすく教えてほしいです!! よろしくお願いします🙇🏻‍♀️

重要例題 2 ホットスポット 5分 太平洋などの海洋底には、 右の図に示すように, 火山島とそ れから直線状に延びる海山の列が見られることがある。 これは, 5000万年前 +z マントル中にほぼ固定されたマグマの供給源が海洋プレートA。 | 1000km +| プレートA 4000万年前 上に火山をつくり プレートAがマグマの供給源の上を動くた こんせき めに,その痕跡が海山の列として残ったものである 問1 上の文中の下線部のようなマグマの供給源の場所を何と よぶか。 最も適当なものを,次の①~④のうちから一つ選べ。 ① チムニー ② 溶岩ドーム ③カルデラ ④ ホットスポット 問2/図に示す海山の配列は, マグマの供給源に対するプレート O 0 〇〇 -2000km a 現在 プレートA上の火山島 (○印)と海山(○印) 火山島 a, 海山b.cの生成年代と,a-b間, b-c間の距離を図に示してある。 Aの運動が, 4000万年前を境に変化したことを示している。 このとき生じた運動 (向きと速さ)の 変化として最も適当なものを,次の①~④のうちから一つ選べ。 ① 北西向き 5cm/年から北向き10cm/年 ② 北向き 10cm/年から北西向き 5cm/年 南東向き 5cm/年から南向き10cm/年 ④ 南向き 10cm/年から南東向き 5cm/年 [2005 本試〕

解決済み 回答数: 1
現代文 高校生

国語の「光の窓」という小説なのですが、問題が 「暗闇の中に差し込む光」について、これを比喩的に表現している言葉を本文中6字で抜き出して答えなさい。 ⤴︎これを教えて頂きたいです。

光の窓 家の雨戸には、横並びに五つか六つ、細長い小窓が付いていた。 窓全体を覆う戸板が で、それをずらすことで開閉できる。雨戸を閉めても、外の様子をのぞくことができ 換気の役目も果たしていただろう。こういう窓を「無双窓」とよぶというのは、後 って知ったことだ。 双窓は子供部屋にもあった。私と妹は、その六畳ほどの狭い和室で寝起きし、宿題も というふうだった。以前は嫁ぐ前の叔母姉妹の部屋だった。 板の微妙なずれ方によって、朝、そこから、 まぶしい光の侵入がある。暗闇の中に差 込む光の模様は、一日として同じことはなかった。 光のトンネルの中に浮かび上がる、きらきらと舞う無数のほこり。 それがおもしろくて いつまでも見ている。そんな子供はどんな時代にもいるはずだ。 110 5 私は、あのとき何を見ていたのか。舞うほこりに見とれていたのか。 いや、光によって 照らし出されたものよりも、通過する光そのもの、光の「働き」のほうに魅せられたので はなかったか。 見るとは実に不思議なことだ。視覚を通して何かを「見る」とき、私たちはいったい何 を見ているのだろう。木だ、空だ、花だと、一つ一つ認識しながら見る場合はいい。そう ではなく、目を開けて何かを見ていても、頭は別のことを考えているということがある。 例えば壁の染みに、染みから想起された全く別の、過去のある出来事を見ているというこ とがある。 視覚の力は圧倒的だが、ほかの感覚に引きずられるとき、目を開けていながら、視界が 空っぽになり、見えている眼前の風景を見ていないということにもなるのはおもしろい経 験だ。 それでも、目が見える場合には、どうしたって見えてしまうし、見てしまうのだから、 その経験は長くは続かない。それが大人の肉体である。今、私は見ている、見ている私が いる、というふうに自意識も動き出してしまう。 こんぜん 子供の頃はそうではなかった。視覚も聴覚も嗅覚も触覚も、五感がもっと渾然と溶け合っ ていて、もっと放心してものを見ていた。我を忘れて、一個の感覚の器として、世界の中 に一人あった。幼年の「からだ」は泥のようになまめかしい。 5 10

未解決 回答数: 1
生物 高校生

これの(5)を教えてください 1番後ろが答えです

発展 25 次の文章を読み、 以下の問いに答えよ。 細胞分画法は,細胞小器官の大きさや重さ の違いを利用し, 細胞小器官やそれ以外の成 分を分離する方法である。 ある動物細胞から, 次のような細胞分画法(図1)で, 細胞小器官 を分離した。 まず, (ア) 4℃の環境のもと, 適切な濃度の 細胞破砕液 遠心分離 1000g 上澄みa 遠心分離 20000g 上澄みb 遠心分離 150000g 上澄みc [沈殿B] スクロース溶液中で細胞をすりつぶし, 細胞 沈殿A] 破砕液をつくった。 次に, 細胞破砕液を試験 管に入れて, 1000g (gは重力を基準とした遠 心力の大きさを表す)で10分間遠心分離し, 沈殿Aと上澄み a を得た。 これらを光学顕 微鏡で観察したところ, 沈殿Aには核と未 破砕の細胞が含まれていたが,上澄み a には,これらは含まれていなかった。 上 澄みaをすべて新しい試験管に移し, 20000gで20分間遠心分離し, 沈殿B と上澄みbに分けた。 さらに, 上澄み b をすべて新しい試験管に移し, 150000g で180分間遠心分離し, 沈殿 Cと上澄み c に分けた。 次に, 各沈殿と各上澄みについて, (イ) 呼吸に関する細胞小器官に存在する 酵素Eの活性を測定し, 表1に示す結果を得た。 なお表中のU(ユニット) は酵素 E 沈殿C 図1 細胞分画法 表1 各沈殿 沈殿 A E の活性(U) 上澄み中の酵素 134 U 上澄み a XU 沈殿 B 沈殿 C 463 U 上澄み b YU 6 U 上澄み c 25 U

回答募集中 回答数: 0
数学 高校生

数学の三角関数の問題です。添付の問題の(1)の解説で、x'=rcos(α+3/π)となっている部分が、x'=rcos(3/π-α)のように思えてしまって、なぜカッコの中がα+3/πとなるのかがわかりません。基本的な考え方が身に付いていないのかもしれず、その前提で教えていただ... 続きを読む

246 基本 例題 153点の回転 π 3 点P(3, 1), 点A(1,4) を中心としてだけ回転させた点を Qとする。 (1)点が原点に移るような平行移動により、点Pが点P'に移るとする。 •だけ回転させた点 Q' の座標を求めよ。 /p.2.41 基本事 25 基本事項 12倍 点P'を原点Oを中心として π 3 (2) 点Qの座標を求めよ。 指針 点P(x0,y) を, 原点Oを中心としてのだけ回転させた点を Q(x,y) とする。 y OP=rとし、 動径 OP と x 軸の正の向きとのなす角をαと すると Xorcosa, yo-rina OQで, 径 OQx軸の正の向きとのなす角を考える と、加法定理により x=rcos(a+0)=rcosacos0-rsinasin( Xo Cos O-yosin 0 Q(rcos(a+0). ysin(a +8) P (rcosa, 2 半角 33倍 rina) 0 % 解 12倍 三角 y=rsin(α+0)=rsinacos0+rcosasin 0 た Yo cos 0+ x sin ( sin( この問題では,回転の中心が原点ではないから, 上のことを直接使うわけにはいかな い。 3点P, A, Q を 回転の中心である点が原点に移るように平行移動して考える。 (1)点Aが原点 0 に移るような平行移動により, 点Pは点 解答 P'(2,-3) に移る。次に,点Q′'の座標を (x, y) とする。 また, OP'=rとし, 動径 OP' とx軸の正の向きとのなす 角を とすると 2=rcosa, -3=rsina x軸方向に-1, y軸 方向に-4だけ平行移 動する。 COS また 更 半の 2 練習 ③ 153 よって x=rcos(a+1)= π 3 =r rcosa cos -rsinasin 3 TC rを計算する必要はな 3 √32+3√3 い。 -2018-(-3)2+3 / 2 y=rsin(u+/5) - =rsinacos 3 πC cos/trcosasin y A 3 =3/12/+2.13 2/3-3 したがって, 点 Q' の座標は 2 2+3/3 3√3 2√3-3) 2 (2)Q'は,原点が点 Aに移るような平行移動によって, 点Qに移るから,点Qの座標は (2+3√3+1.2/8-3+1)から(4+3/82/3+5) 1/20 P/ PQ 13 πだけ回転させた点 Qの座標を求めよ。 (2)点P(3,-1), 点A(-1, 2) を中心として 標を求めよ。 TC 3 だけ回転させた点Qの座 p.254 EX93 (2)

未解決 回答数: 1