学年

質問の種類

数学 高校生

下線部のところを入れ替えたら答えが違うのになるんですけどなんで入れ替えたらいけないんですか?

解答 84 メネラウスの定理と三角形の面積 面積が1に等しい△ABCにおいて, 辺BC, CA, AB を 2:1に内分する点をそ 00000 れぞれL, M, N とし,線分 AL と BM, BM と CN, CN と AL の交点をそれ ぞれP,Q, R とするとき (1) AP: PR: RL=| [類 創価大] (2) PQR の面積は 指針 基本 例題 (1) △ABL と直線CN にメネラウス → LR: RA △ACL と 直線 BMにメネラウスLP: PA これらから比AP : PR: RL がわかる。 HART (2) 比BQ: QP PM も (1) と同様にして求められる。 △ABCの面積を利用して, △ABL → APBR → APQR と順に面積を求める。 三角形の面積比 (1) ABLと直線CN について, メネラウスの定理により : である。 AN BC LR NB CL RA 2 3 LR 1 1 RA ·=1 |:1である。 200 AABC= 3 点で =1 APQR= = 1 すなわち TAB N すなわち よって LR: RA=1:6... ① △ACL と 直線BM について, メネラウスの定理により AM CB LP MC BL PA 等高なら底辺の比等底なら高さの比 3 ゆえに 2= 3/1/₁ APBR= 6 図解 △ABP=2AABL=243AABC=62727 ABCQ, CAR も同様であるから A 3 201 7 Pl よって LP:PA=4:3 ... (2) ①,②から AP: PR: RL=3:13:1 (2) (1) と同様にして, BQ: QP:PM=3:3:1から 3 AABL= △PBR=- BR=127AABL=2424 △ABL= APQR=(1-3x) AABC="// 7 13 LP 2 2 PA M Q -2- L-1 C VR -=1 8A= ◄ 1のとき ( 469 プレ LR RA Q R B 2 L-1- 定理を用いる三角形と直 線を明示する。 基本 82, 83 =1/ A n Pl XM LP 152 = 14/04 PA Im から AP: PR: RL =l:min とすると m+n L-1.mtp-/1/1 6' l=m=3n 561 4 3 L, M, N は3辺を同じ 比に内分する点であるか ら,同様に考えられる。 28 △ABCの辺ABを1:2に内分する点をM, 辺BC を 3:2に内分する点を N とす る。線分 AN と CM の交点をOとし、 直線BO と辺 AC の交点をPとする。 △AOP の面積が1のとき, △ABCの面積Sを求めよ。 白っ [ 岡山理科大 ] (1 p.477 EX55 3章 3 12 チェバの定理、メネラウスの定理

回答募集中 回答数: 0
数学 高校生

244. この問題において、Dを求めることって必要ですか? 実際この問題はDを求めずとも答えに辿り着けるし、 他の教材等で同様の問題の解答を見たときDについて調べていなかったのですが、必要なのでしょうか??

372 基本例題 244 面積の最大最小 (1) 点 (1, 2) を通る直線と放物線y=x² で囲まれる図形の面積をSとする。 S AA ARŠNODUR 小値を求めよ。 指針 点 (1,2) を通る直線の方程式は,その傾きを m とすると,y=m(x-1)+2と表され まず, この直線と放物線が異なる2点で交わるとき, 交点のx座標α, BでSを表す。 このとき, 公式f(x-a)(x-3)dx=-12 (B-α) が利用できる。 更に,S を m の関数で表し,mの2次関数の最小値の問題に帰着させる。 解答 点 (1, 2) を通る傾きmの直線の方程式は y=m(x-1)+2 ...... ① と表される。 直線 ① と放物線y=x2 の共有点のx座標は, 方程式 x2=m(x-1)+2 すなわち x2-mx+m-2=0 の実数解である。 この2次方程式の判別式をDとすると D=(-m)²-4(m-2)=m²-4m+8=(m-2)2+4 常に D>0 であるから, 直線 ① と放物線y=x2 は常に異なる 2点で交わる。 その2つの交点のx座標をα, β(α<β) とすると s=${m(x-1)+2-x*}dx=- = -√²₂(x²-₁ T 2-mx+m-2)dx =-f(x-a)(x-B)dx=1/12(B-α) また B-α= m+√√D m-√√√D -=√D=√(m-2)² +4 2 2 したがって, 正の数β-α は, m=2のとき最小で,このとき (B-α)も最小であり,Sの最小値は 1/12 (14)-1/30 adst 7-8-9 adot x2-mx+m-2=0の2つの解をα, β とすると よって ゆえに (B-a)²=(a+β)²-4aβ=m²-4(m-2)=(m−2)²+4 3₁ 点 (1,2)を通りに な直線と放物線y=x^ まれる図形はない。 よって x軸に垂直な直線は考えな てよい。 X=- 検討 β-αに解と係数の関係を利用 S=1/12 (B-4)において, (B-α)の計算は 解と係数の関係を使ってもよい。 a+β=m,aβ=m-2 (1,2) α, βは2次方程式 x²-mx+m-2-00 TS, mt√m²-4m+! 2 S=— (B—a)³= ¹ {(B—a)³²}* = = = {(m−2)² + 4) ³ ≥ — • 4³-4 6 m²-4m+8=D XD-M300 TIROMA

回答募集中 回答数: 0