学年

質問の種類

物理 高校生

【電磁誘導】電池の向気がこっちになる理由がまじで意味がわかりません

界を斜めに横切る導体標 「お肉のように、直上向きの磁束密度の磁 導体でできた2本のレールが間隔だ て置かれている。 レールは水平面に対して 人だけ願いている。レールの端に起電力 電池と可変抵抗器を接続し、レール上に質 の導体棒PQを置いたところ、導体棒は 水平を保ったままレールに沿って上昇し、速さv[m/s) の等速度運動になった。 重 加速度の大きさをg[m/s*] とする。 摩擦はないものとし、回路を流れる電流がつ くる磁界は無視する。 (1) 導体棒に発生する誘導起電力の大きさは何Vか。 B. 1, 0, 0 を用いて表せ。 このときの可変抵抗器の抵抗値、また、可変抵抗器で発生する単位時間あたり ジュール熱、それぞれB、Em, v, g, を用いて表せ。 これ これ、ネルギー保存 (電池の仕事) (ジュール ギーの増士) が成り立つ。 El-Q+mgr sin 位置エネル 平行レール 磁界を垂直に横切る速度 (1) 成分は seese [ms だから 誘導 起電力の大きさ 〔V〕は、 V=nos0) Bl=vBl cos 0 [V] (2誘導起電力の向きはレンツの法 より、上向きの磁束を増やす (2) きとなるので、上から見て反時計 回りになる。 誘導起電力を電池と 考えると、右図のような回路とみ なせる。ここで、回路を流れる電 流の強さをI[A] 可変抵抗器の抵 抗値をR[Ω]とすると、 オームの 法則より、 I= E-vBl cos 0 R -(A)······· 斜面に平行な方向の力のつり合いより、 mg sin - IBI cos 8=0 これに①を代入すると、 mg tan R= BI (E-UBI cos 6 ) mg tan 求めるジュール熱 Q[J] は, Q = RItより、 E-Bl cos Q=Rx x1 = -(0) 395 396 PR (E-Bl cost) BL 可変抵抗器 B 0 水平面 Ke vcos O mg ・R (E-vBl cos 0)| I IBI P 28 の入 配布し h

未解決 回答数: 1
数学 高校生

144.2 「y=(x+1/2)^2-5/4」と書いたところから直で 「したがって...」と記述してもいいですか?

重要 例題 144 三角方程式の解の個数 aは定数とする。0に関する方程式 sin²0-cos0+α=0 について,次の問いに答 えよ。ただし、0≦0 <2π とする。 (1) この方程式が解をもつためのαの条件を求めよ。 (2) この方程式の解の個数をaの値の範囲によって調べよ。 指針 cos0=xとおいて, 方程式を整理すると 前ページと同じように考えてもよいが, 処理が煩雑に感じられる。そこで, x²+x-1-a=0 (-1≤x≤1) WATC ① 定数αの入った方程式 f(x)=αの形に直してから処理に従い,定数aを右 辺に移項した x2+x-1=αの形で扱うと、関数 y=x2+x-1(-1≦x≦1) のグラフと直 線y=a の共有点の問題に帰着できる。 直線y=a を平行移動して, グラフとの共有点を調べる。 なお, (2) では x=-11であるxに対して0はそれぞれ1個, -1<x<1であるxに対して0は2個あることに注意する。 解答 COS0=x とおくと, 0≦0<2πから 方程式は (1-x2)-x+a=0 したがって x2+x-1=a 5 f(x)=x2+x-1 とすると = ( x + 1 1/2)²³ - 1²/1/2 (1) 求める条件は、-1≦x≦1の範囲で, 関数 y=f(x) の グラフと直線y=α が共有点をもつ条件と同じである。 よって、 右の図から ≦a≦1 5 (2) 関数y=f(x)のグラフと直線y=a の共有点を考えて 求める解の個数は次のようになる。 5 4 5 [1] a<-1, 1 <a のとき共有点はないから 0個 [2] a=-- -1≤x≤1 5 [3] <a<1のとき f(x)=(x+ のとき,x=- から 2個 =1/3から 2 1 2 <x<0 の範囲に共有点はそ [6]→ [5] - 練習 ④ 44 よって調べよ。 ただし, 0≦02m とする。 [4]/ [3]+ [2] この解法の特長は, 放物線を 固定して, 考えることができ るところにある。 [6] - [5] [4] - [2]+ [4]+ グラフをかくため基本形に。 iy=f(x) ya XA 11 0 -1<x<- 1 2' れぞれ1個ずつあるから 4個 [4] α=1のとき、x=-1 から 3個 0 [5] -1<a<1のとき,0<x<1の範囲に共有点は1個あるから2個 [6] α=1のとき、x=1から1個 π 重要 143 1 y4 1 O 12 1x [Q 20 152-7605724 0に関する方程式 2cos20-sin0-a-1=0の解の個数を,定数aの値の範囲に Cp. 226 EX90, 91 [3] 225 144 24 三角関数の応用 4章 23

回答募集中 回答数: 0
数学 高校生

175.3 訂正後の記述に問題はないですかね??

例題165同様、 け平行移動したもの フと対称 フと対称 フと対称 昇する。 軸との交点の (真数) = 1 とすると, x+3=1から x=-1 logeb logea logab=i oga MN=loga Me 軸との交点の x-8-1から log, (4x-8) 基本例題 175 対数の大小比較 次の各組の数の大小を不等号を用いて表せ。説明 (1) 1.5, log35 (2) 2, log49, log25 (3) logo.53, logo.52, log32, log52 p.273 基本事項 ② 指針 対数の大小比較では,次の対数関数の性質を利用する。 a>1のとき0<b<glogap<logag AUTO 大小一致 関係をいた 0<a<1のとき 0<p<glogp>logaq -------------- に関する箇所 ージで触 CHART 対数の大小 底をそろえて 真数を比較 大小反対 (不等号の向きが変わる ) まず異なる底はそろえることから始める。 (1) 小数 1.5 を分数に直し,底を3とする対数で表す。 (2) 210g49を底を2とする対数で表す。 (3) 4数を正の数と負の数に分けてから比較する。 ・........ 0 また, 10g32, 10g52の比較では, 真数がともに2であるから 底を2にそろえると考えやすい。 解答 0x T (1) 1.5 = 3 3 2 = -log33=log3 32 また (32)=3327>52 & 底3は1より大きく35であるから したがって ( 22210g2=10g222=10g24, 底2は1より大きく, 3 4 <5であるから log33ž>log35 1.5 >log: 5 すなわちょ<0.2 x 1218 同値では10g232 log49= ED ECC =10g23 log23<log24 <log25 すなわち 10g9 <2<log25 (3) 底0.5は1より小さく,3>2>1であるから H logo.53<logo.s2<0 (175 1 log23' すなわち したがって log22² 6-1 log32= log52= 1 <3 <5であるから 0<log23<log25 moke (Fall-colto 13___1 よって 0< log25 で,底2は1より大きく log25 log2 3 2175 (1) log23, log25 はな よいお願 0<log52<log32 logo.53 <logo.52 <logs 2 <logs2 10gag log.pt 0 ye 次の各組の数の大小を不等号を用いて表せ。 10144 p y=logaxのグラフ a>1 q x y 0<a<1 logap OP loga q 底はそろえよ 1 9 <A > 0, B>0ならば A>B⇔A'>B' 底の変換公式。 のように 不等号の向きが変わる。 指針のy=10gaxのグラフ から, 0<a<1のとき α>1 のとき 0<x<110gax<0 x>1⇔10gax>0 0<x<1⇔loga x>0 x>1⇔logax < 0 Op.293 EX113, (2) logo.33, logo.35 (3) logo.54, log24, log34 275 5章 31 対数関数

回答募集中 回答数: 0
数学 高校生

144.1.2 記述はこれでも大丈夫ですか??

とも1つの円 に着目 +2a=0& すると 2=a(x-l 放物線 リニュ -2) の共有 ≦x≦1の 考えてもより を参照。 YA 重要例題144 三角方程式の解の個数 Capry aは定数とする。0に関する方程式 sin' 0-cos0+α=0 について,次の問いに答 えよ。ただし, 0≦02とする。 00 [[大 (1) この方程式が解をもつためのαの条件を求めよ。 (2) この方程式の解の個数をαの値の範囲によって調べよ。 指針 cos0=xとおいて, 方程式を整理すると 前ページと同じように考えてもよいが、処理が煩雑に感じられる。 そこで、 x2+x-1-a=0 (-1≦x≦1) ① 定数αの入った方程式f(x)=αの形に直してから処理に従い,定数aを右 大辺に移項したx2+x-1=αの形で扱うと、関数y=x2+x-1(-1≦x≦1) のグラフと直 線y=a の共有点の問題に帰着できる。 DET. www.e ] → 直線y=a を平行移動して, グラフとの共有点を調べる。 なお, (2) では 方程式は したがって 解答 cos0=xとおくと、0≦0<2πから (1-x2)-x+α=0 x2+x-1=a f(x)=x2+x-1 とすると f(x)=(x+ (1) 求める条件は、-1≦x≦1の範囲で、関数 y=f(x) の グラフと直線y=α が共有点をもつ条件と同じである。 5 よって、 右の図から ・≦a≦1 (2) 関数 y=f(x)のグラフと直線y=α の共有点を考えて、 求める解の個数は次のようになる。 [3] x=-1, 1であるxに対して0はそれぞれ1個, -1<x<1であるに対して0は2個あることに注意する。 5 [2] a=-- 5 4 5 4' — 練習 144 A [1] a<-- 1 <a のとき共有点はないから 0個 のとき, x=-- <a <1のとき -1exelt 2 2 から 2個 5 4 -1<x<--<x- れぞれ1個ずつあるから 4個 [4] α=-1のとき, x=-1, 0 から 3個 <x<0 の範囲に共有点はそ [6] [5] [4] この解法の特長は、放物線を 固定して, 考えることができ るところにある。 [3]→ 友量[2]- [6]→ [5]- [4]~ [2]+ [4]→ グラフをかくため基本形に。 y=f(x) 1 重要 143 XA iO |1 TIR» 1 2 YA 1 [5] -1<a<1のとき,0<x<1の範囲に共有点は1個あるから 2個 +35850 08 [6] α=1のとき, x=1から1個 2π 225 [3] 2001 0に関する方程式 2cos2Q-sin0-a-1=0の解の個数を,定数aの値の範囲に p.226 EX90,91 ただし。 0≦0<2πとする。 4章 23 三角関数の応用

回答募集中 回答数: 0
数学 高校生

74.2 これでも大丈夫ですよね??

分する。 よ。 を する。 (X₂, 3) の座標は の平均 ばよい。 < 1 7 平行四辺形の頂点の座標 基本例題 74 (1) A(7, 3), B(-1, 5),C(5, 1), D を頂点とする平行四辺形ABCD の頂点D の座標を求めよ。 (2)3点A(1,2), B (5, 4), C (3, 6) を頂点とする平行四辺形の残りの頂点D の座標を求めよ。 指針 平行四辺形の対角線は、互いに他を2等分するから, 2本の対角線の中点が一致する。 このことを利用して,点Dの座標を求める。・・・・・・・・・・ (普通、平行四辺形ABCD というように,頂点の順序が与えられているときは,Dの位 置は1通りに決まる。 (2) (1)異なり、頂点の順序が示されていないから, 平行四辺形ABCD と決めつけては いけない。 ABCD, ABDC, ADBCの3つの場合を考える。 解答 頂点Dの座標を(x,y) とする。 (1) 対角線AC, BD の中点をそれぞれ M, N とすると M(715, 3+¹), N(−1+x 5+y) 2 点Mは点N と一致するから -1+x 4 12 2 22 5+y 2 よって x=13, y=-1 ゆえに D(13, -1) (2) 平行四辺形の頂点の順序は,次の3つの場合がある。 [1] ABCD [2] ABDC [3] ADBC [1] の場合,対角線は AC, BD であり,それぞれの中点を M, N とすると M(1+3, 2+6), N(5+x 4+v) 2 以上から、点Dの座標は 4 2 _5+x 2 8 4+y 2 2 M, Nの座標が一致するから これを解いて x=-1, y=4 [2] の場合,対角線は AD, BCであり,同様にして 1+x=22₁ ²2 8 2+y_10 2 よって x=7, y=8 [3] の場合,対角線は AB, CD であり,同様にして 6 3+x 6 6+y 2 22 2 よって x = 3, y=0 (-1, 4), (7, 8), (3, 0) B. p.113 基本事項 ④4 0 M(N) C C A AL DM B D x D' (検討) 上の図で, 線分 AD', BD, CD" の交点は △DD'D" の重 心であり, △ABC の重心で もある。 練習 3点A(3, 2), B(4, 1), C (1, 5) を頂点とする平行四辺形の残りの頂点Dの座 ② 74 標を求めよ。 119 3章 12 直線上の点 平面上の点

回答募集中 回答数: 0
数学 高校生

73.3 これでも記述大丈夫ですよね??

118 日 基本例題73 線分の内分点外分点、重心室1000 3点A(5,4),B(0, -1), C(8, -2) について,線分 AB を 2:3に外分する。 をP, 3:2に外分する点をQとし、△ABCの重心をG とする。 (1) 線分 PQ の中点 M の座標を求めよ。 (2) 点Gの座標を求めよ。 (3) APQS の重心が点G と一致するように, 点Sの座標を定めよ。 p.113 基本事項 ④,⑤5 指針 座標平面上の3点A(x1, y1), B(x2, y2), C(x3, y3) について > nxi+mx2 ny₁+my² 線分ABの内分点 m+n m+n 線分 AB の外分点 解答 (1) 点Pの座標は (2) 練習 73 |-nxi+mx2 m-n -3.5+2.0 -3・4+2・(-1)) 2-3 2-3 点Qの座標は (-2.5 +3.0 -2.4+3・(-1)\ 3-2 9 9 から よって, 線分PQの中点 M の座標は (*) (15+(-10) 14+ (-11)) 2 2 (2) 点Gの座標は y+y2+ys △ABC の重心 x+x2+x3 3 3 (3)S(x,y)として, APQS の重心と点Gのx座標、y座標をそれぞれ一致させる。 |から " -nyi+myz m-n (15,14) 5+x 3 5 すなわち (12/28) 3 2' (5+0+8+(-1)+(-2)) すなわち ( 13.1/28) 3' (3) S(x, y) とすると, (1) から, △PQSの重心の座標は (15+(-10)+x 14+(-11)+ど)から(3) これが点Gの座標と一致するとき よって (-10, -11) ALL (DS-də+²µà)8= 13 (3+y 3' 3 x=8, y=-2 すなわち S(8,-2) 内分点の公式でnを -n におき換えた形 21-684-10-200 (*) 2点 (x1,y1, x2, を結ぶ線分の中点の座標: 1 3 重要 81. 1A x₁+x₂ ₁ + y₂ 2 2 内分点の公式で, m=n=1 としたもの。 (2)2点A(-1,-3), B を結ぶ線分AB を 2:3に内分する (1−1)であるという。このとき, 点Bの AUTA 重心の座標は、3点の平均 とイメージしておけばよい dan+ 0x (1) 3点(1,1),B(3,4,62) にいて、線分ABを3:2に内分する をP, 3:2に外分する点をQとし, △ABC の重心をG とする。 このとき, 3点P, Q, Gの座標をそれぞれ求めよ。 I ! 頂

回答募集中 回答数: 0
数学 高校生

73.3 これでも記述大丈夫ですよね??

118 日 基本例題73 線分の内分点外分点、重心室1000 3点A(5,4),B(0, -1), C(8, -2) について,線分 AB を 2:3に外分する。 をP, 3:2に外分する点をQとし、△ABCの重心をG とする。 (1) 線分 PQ の中点 M の座標を求めよ。 (2) 点Gの座標を求めよ。 (3) APQS の重心が点G と一致するように, 点Sの座標を定めよ。 p.113 基本事項 ④,⑤5 指針 座標平面上の3点A(x1, y1), B(x2, y2), C(x3, y3) について > nxi+mx2 ny₁+my² 線分ABの内分点 m+n m+n 線分 AB の外分点 解答 (1) 点Pの座標は (2) 練習 73 |-nxi+mx2 m-n -3.5+2.0 -3・4+2・(-1)) 2-3 2-3 点Qの座標は (-2.5 +3.0 -2.4+3・(-1)\ 3-2 9 9 から よって, 線分PQの中点 M の座標は (*) (15+(-10) 14+ (-11)) 2 2 (2) 点Gの座標は y+y2+ys △ABC の重心 x+x2+x3 3 3 (3)S(x,y)として, APQS の重心と点Gのx座標、y座標をそれぞれ一致させる。 |から " -nyi+myz m-n (15,14) 5+x 3 5 すなわち (12/28) 3 2' (5+0+8+(-1)+(-2)) すなわち ( 13.1/28) 3' (3) S(x, y) とすると, (1) から, △PQSの重心の座標は (15+(-10)+x 14+(-11)+ど)から(3) これが点Gの座標と一致するとき よって (-10, -11) ALL (DS-də+²µà)8= 13 (3+y 3' 3 x=8, y=-2 すなわち S(8,-2) 内分点の公式でnを -n におき換えた形 21-684-10-200 (*) 2点 (x1,y1, x2, を結ぶ線分の中点の座標: 1 3 重要 81. 1A x₁+x₂ ₁ + y₂ 2 2 内分点の公式で, m=n=1 としたもの。 (2)2点A(-1,-3), B を結ぶ線分AB を 2:3に内分する (1−1)であるという。このとき, 点Bの AUTA 重心の座標は、3点の平均 とイメージしておけばよい dan+ 0x (1) 3点(1,1),B(3,4,62) にいて、線分ABを3:2に内分する をP, 3:2に外分する点をQとし, △ABC の重心をG とする。 このとき, 3点P, Q, Gの座標をそれぞれ求めよ。 I ! 頂

回答募集中 回答数: 0
数学 高校生

122.1.イ 記述これでも良いですか? また、記述問題だとしても(mod12で8^2 ≡4と8^4≡4より2k乗とした)解説の方法で解いて良いのですか? (8^2 ≡4と8^4≡4より感覚的にはmod12で8の2k乗≡4は分かるけど2つの例だけで2k乗とおくのは証明が不足... 続きを読む

は る)。 D a うる。 る。 ) pk k 2 2 演習 例題 122 合同式の利用・・・ 累乗の数の余り 合同式を利用して,次のものを求めよ。 ア) 13100 9で割った余り (イ) 20002000を12で割った余り [(イ) 早稲田大〕 (2) 472011 の一の位の数 (2) 類 自治医大] 指針 乗法に関する次の性質を利用する。 a=b (mod m), c=d (mod m) のとき 3ac=bd (mod m) (1) 累乗の数に関する余りの問題では、余りの周期性に着目することがポイントである。 また、合同式を利用して、 指数の底を小さくしてから, 周期性を調べると計算がらくに なる。 ・・・・・・ 注意 α” のα を指数の底という。 解答 (1) (ア) 134 (mod9) であり 4² 16 7 (mod 9), 4°=64=1 (mod 9 ) ゆえに |42100=4.(43)=4 (mod9) 特に,a=1 (mod m) となるようなnが見つかれば、問題の見通しがかなり良くなる。 (2) ある自然数Nの一の位の数は, N10で割ったときの余りに等しい。 したがって, 10 を法とする剰余系を利用する。 CHART 累乗の数を割った余りの問題 余りの周期性に注目 よって したがって 求める余りは 4 13100=4100=4 (mod9 ) 4 自然数nに対し α"=6" (mod m) (イ) 2000=8 (mod12) であり 8°=8.4=8 (mod 12), ゆえに,kを自然数とすると よって 82=64=4 (mod 12), 8'=(82)=42=4(mod 12) 82k4 (mod12) 20002000=820004 (mod12) したがって 求める余りは (2) 477 (mod10) であり 7³ 9-7=3 (mod 10), ゆえに よって 472011 720113 (mod10) したがって 47 2011 の一の位の数は 7 72 49=9 (mod 10), 7=92=1 (mod 10) 72011 (74) 502.73 1502.3=1-3=3 (mod 10) 00000 p.492 基本事項 [③3] 3 次のものを求めよ。 13-49 であるから, 13 と4は9を法として合同で あることに着目し, 4 に関 する余りを調べる。 132, 13 を9で割った余り を調べてもよいが, 一般に 42 4の方がらく。 2000" の計算は面倒。 2000 12で割った余りは 8 であるから 2000 と8は 12 を法として合同。 したがって, 8" に関する余 りを調べる。 47=10・4+7 2011=4・502+3 15245 (イ) 30003000 を14で割った余り 495 4章 19 発展合同式 る。 る。 2) -1) でる たと は、 は, な 満 3進

回答募集中 回答数: 0