学年

質問の種類

数学 高校生

(1)についてなのですが、p=0が必要条件かそうでないかの見分け方が分かりません。また、(2)の最後の行でも、十分性について確認してるのですが、(1)よりと同じ形なので必要十分条件をまとめて(1)よりで良いかと思ったのですが、書いた方がいいですか?回答よろしくお願いします!

考えること 例 すべての整数 m に対して m²-m-1 pm がつねに整数となるよう な定数 p を求めよ. -95-14 (2) a, b を定数として, 多項式 f(x) を 10)=8.180 f(x)=x4+ax2+bx-a-2 によって定義する. すべての整数に対して f(m) がつね m2-m-1 に整数となるための必要十分条件を a, b を用いて表せ. (M) (1) m (>0)***<l<n<&)+)n(In) = (mm) p h)(I-n)(Sn) = 〔北海道〕 m2-m-1 1枚のだから、2 m- -1- + m の分母はいくらでも大きくなるので, | ① | の値はいくらでも小さくなる.し たがって,「すべてのm > Nについて|①|<1」 となる N がある.また |①| は整数だから,このとき ① = 0 すなわち p=0である (必要).p=0 のとき ① = 0だから条件をみたす (十分)ので, 求める p p=0. (2) f(x) をx-x-1で割ることにより, f(x) = (x2-x-1)(x2 + x + a + 2) + (a + b + 3)x さ f(x) (a + b + 3)x =x+x+a +2 + ② x2-x-1 x2-x-1 (I (1-x2-x-12 とかける. 78 x が整数のとき②が整数となるならば,とくに x = 0 としてa+2は 整数,すなわち q は整数である.また,このときすべての整数x に対して (a+b+3)x x2-x-1 が整数なので(1)からa+b+3=0である (必要) 逆にaは整数でa+b+3=0のとき, ②から条件は成り立つ (十分). 以上から,求める必要十分条件はαは整数かつa+b+3=0 ロ

解決済み 回答数: 1
数学 高校生

解答の1行目のθが0以上2π未満って書かないとダメなんですか?また、なぜθの制限をかけないといけないのでしょうか。回答お願いします。

重要 例題 165 2 次同次式の最大・最小 実数x,yx2+y'=1 を満たすとき, 3x²+2xy+y2の最大値は 指針 である。 ①①① 最小値 基本 164 1文字を消去, 実数解条件を利用する方針ではうまくいかない。そこで,条件式 x2+y2=1は,原点を中心とする半径1の円を表すことに着目する。 →点(x, y) は単位円上にあるから,x=cosl, y=sing とおける (検討 参照)。 これを3x2+2xy+y2に代入すると, sind, coseの2次の同次式となる。よって, 後は前ページの基本例題164と同様に, に隠して合成の方針で進める。 x+y2=1であるから,x=cosl, v=sin6 (0≦0<2z) とお | 条件式がx2+y=r 解答 くことができる。 P=3x2+2xy+y2とすると P=3cos20+2cos Osin0+ sin20 1+ cos 20 =3. +sin 20+ 1-cos 20 2 2 =sin 20+cos 20+2=√2 sin 20+ 0≦0<2のとき, 20+ ゆえに π 4 -1≦sin(20+ =√2 sin(20+4 +2 の形のときの最大・最 小問題では,左のよう におくと, 比較的ら に解答できることも あるので、試してみ とよい。 三角関数の合成。 π <4+4であるから 4 in(20+ 7/7) ≤1 π -√2+2≦√2 sin(20+zx) +2=√2+2 よって, Pの最大値は 2+√2, 最小値は 2-√2 である。 □Pが最大となるのは, sin (20+4)=1の場合であり,このとき20+オープ すなわち 0 5 2' 2 π π 9 である。これから,半角の公式と0+πの公式を用いて,最大値 8' 8 与える x, yの値が求められる (下の練習 165 参照)。

解決済み 回答数: 1