学年

質問の種類

数学 高校生

オレンジで印をつけたところについて。なんで両方ともイコールがついてるんですか?a<1の場合、a=1の場合、a>1の場合のように区別するんじゃないんですか?

40 72次関数の最大・最小/定義域が一定区間 αを定数とする. 2次関数y='ー2ax+3の0≦x≦2における最大値 M (α) を, 最小値をm(a) とする.M(a), m (α) を求めよ. またM(α) -m (a) の最小値を求めよ. ( 類 摂南大) v=d(x-p2qのグラフ m 2 平方完成 2次関数の値の変化の様子をとらえるには, y=d(エーp)2+qの形 (平方完成) にすることが絶対的であって (ェが1か所にしか登場しないので, 関数値の変化の様子がよく 分かるようになる), 関数値は 1/4 d>0 d<0....... |ーカが大きいほど小さくなる d0.......が大きいほど大きくなる というように変化することが分かる. d<0 g-- 9 0 P x 70 P 最大・最小 下に凸 (2次の係数が正) の場合、区間α ≦x≦ β における最大・最小は下のよう. v=f(x) 最大はこれらを使って ① (軸) (軸) ② ③ ④ 最小 最大 (6) 最小 最小 最大 最大: 最大: Ü v v Û Û Û Ü け f= fla 05 a 0 x α Bx x a B α B x a B x 最小はこれらを使って 区間の中点 最小値は, 対称軸が区間内であれば頂点の座標 (上図②), なければ対称軸に近い方の端点のy座標 である (1, 3). 最大値は, 対称軸から遠い方の端点のy座標, つまり対称軸が区間の中点より左側に あればf (B) (④, ⑤), 右側にあればf (α) (⑥ ⑦) である. +B 2 ■解 fl: グラン 解答 f(x) =ュー2ax+3 ア とおくと, f(x) = (x-α) -α+3であるから, y=f(x)のグラフは下に凸で,軸はx=αである. 区間 0≦x≦2 における最大値は, 区間の中点がx=1であることから, a≦1 のとき,M(α)=f(2)=-4a+7 (アに代入した) 1≦a のとき,M(α)=f(0)=3 また, 0≦x≦2における最小値は, 軸が区間に入るかどうかに着目して 0≦a≦2のとき, m(α)=f(a)=-α2+3 [注] M(α), m (α) はαで表され ることから,M (α) -m (α) は a の関数と見ることができる. 軸と区間の中点の位置関係で場 合分けする(上図 ④と⑤のケース と, ⑥と⑦のケースとで場合分 け)。 上図の② ①③で場合分けする. つぎ ここ b a<0 のとき,m(a)=f(0)=3 2<a のとき, m(α)=f(2)=-4a+7 以上からM (α), m(a), M(α) -m (α) は次のようになる. 直線 b=-4a+4 であ よ ■m (α) の場合分 [0≤a≤2 図 1 直線 b=44-4 けは,a≦0 12≦a a M(a) m(a) M(a)-m(a) a<0 0≤a≤1 -4a+7 3 -4a+7 -a²+3 -4a+4 (a-2)² 1≤a≤2 2<a 3 3 -a²+3 -4a+7 a² 4a-4 b=a2 b=(a-2)2 0 2 a としてもよい。 境界のα=0, 2 では2つの m(α) の式で通 用し、 同じにな るかでミスを チェックできる. b=M(a)-m(a) のグラフは右図のようになるから, α=1のとき最小値1 07 演習題 (解答は p.56) a を実数とする.y=a(x-a)+1の-1≦x≦2における最大値Mを求めよ。 (愛知医大・看護)の符号にも注意する。

未解決 回答数: 1
数学 高校生

(1)の四角で囲ってる部分がよくわからないです。なんでこの計算になってるのかひとつずつ教えて欲しいです。お願いします🙇‍♀️

00 二項 1 の 次の等式を満たす整数x、yの組を1つ求めよ。 例題 126 1次不定方程式の整数解(1) 11x+19y=1 MART & SOLUTION 1次不定方程式の整数解 ユークリッドの互除法の利用 00000 (2) 11x+19y=5 p.463 基本事項 1,2 11と19は互いに素である。 まず, 等式 11x+19y=1のxの係数11 との係数 19 に 互除法の計算を行う。 その際, 11 <19 であるから, 11 を割る数, 19 を割られる数として 割り算の等式を作る。 =11,6=19 とおいて,別解 のように求めてもよい。 の係数との係数が (1) の等式と等しいから, (1) を利用できる。 (1)の等式の両辺を5倍すると 11(5x)+19(5y)=5 よって、 (1) で求めた解を x=p, y = g とすると, x=5p, y=5g が (2)の解になる。 (1) 465 3=2・1+1 移すると 1=3-2.1 1=2- JJ 3=11-8・1 4章 15 319, 5, 次 めあうに いる 煮)。 (1) 19-11-1+8 移すると 8=19-11・1数解を 別解 (1) α=11,b=19 さ 取る 11=8・1+3 移すると 311-8.1とする。 8=3・2+2 移すると 28-3・2819-11・1=b-a 残る。 4個 よって 1-3-2-1-3-(8-3.2).1 方形 ちょ ごき すなわち 長さ 回数。 ユークリッドの互除法と1次不定方程式 11 33 =8・(-1)+3・3=8・(-1)+(11-8・1・3・ =11・3+8・(-4)=11・3+(19-11・1)・(-4) =11.7+19.(-4) 11・7+19・(-4)=1 ...... ① ゆえに、求める整数x、yの組の1つは x=7,y=-4 (2)①の両辺に5を掛けると すなわち 11•(7·5)+19•{(−4)•5}=5 よって、求める整数x、yの組の1つは 11・35+19・(-20)=5 x=35,y=-20 + =a-(b-a) 1=2a-b 2=8-3-2 =(b-a)-(2a-b)・2 + =-5a+36 (2)の整数解にはx=-3, y=2 という簡単なものも ある。このような解が最初に発見できるなら,それを 答としてもよい。 PRACTICE 126 次の等式を 13-2・1 =(2a-b)-(-5a+3b).1 =7a-4b すなわち 11・7+19・(-4)=1 よって求める整数x、yの 1つはE x=7, y=-4 慎重に 介 ート

未解決 回答数: 1
英語 高校生

英検2級の問題です。添削して欲しいです🙇‍♂️

ライティング(英文要約) 記入してください。 ●以下の英文を読んで,その内容を英語で要約し、解答欄に記入しなさい。 ●語数の目安は45語~55 語です。 SO 解答用紙のB面にある英文要約解答欄に書きなさい。なお、解答欄の 外に書かれたものは採点されません。 解答が英文の要約になっていないと判断された場合は, 0点と採点されること があります。英文をよく読んでから答えてください。 University students often plan for their future careers by attending job fairs or searching online for information about different kinds of work opportunities. There are other ways, too. Some of them choose to join short-term work programs at companies called internships. 002 29112 diw These have some good points. Students will be able to know more about companies they are interested in, such as what kind of jobs there are and what kind of people are working there. Also, internships allow students to get to know other students. These students can encourage each other both during and after the internship. She has a On the other hand, if students choose to join very short internships, they may not be able to understand the job they are doing before the internships end. Also, students who take part in internships may find it difficult to do well in their studies.

未解決 回答数: 1