学年

質問の種類

数学 高校生

(2)は判別式と最初に書いてあるa>0の2つの条件のみで解くのはだめですか?g(-1)と軸>-1は必要ですか?

40 逆関数 (s)=var-2-1 (a>02) とするとき、次の問いに答えよ (1) y=f(x) の逆関数y=f(x) を求めよ.(s) ハー (2) 曲線 y=f(x) と曲線 C2:y=f-l(xc) が異なる2点で交わる ようなαの値の範囲を求めよ. (3) C,C2の交点のx座標の差が2であるとき,αの値を求めよ。 (0>x) (x)\S 〈逆関数の求め方〉 精講 y=f(x) の逆関数を求めるには,この式を x=(yの式)と変形し, xとyを入れかえればよい 〈逆関数のもつ性質> I. もとの関数と逆関数で, 定義域と値域が入れかわる Ⅱ. もとの関数と逆関数のグラフは、直線 y=x に関して対称になる 逆関数に関する知識としてはこの3つで十分ですが,実際に問題を解くとき 〈逆関数のもつ性質〉を上手に活用することが必要です. この基礎問では,Iが ポイントになります。 解答 (1)y=√ax-2-1 とおくと, √ax-2=y+1 よって, y+10 より, 値域は y≧-1 ここで,両辺を2乗して ■大切!! ax-2=(y+1)2 . a x = 1/1 (4+1)² + 2/2 (y = −1) a よって、f(x)=1/2(x+1)+12/2(x-1) 【定義域と値域は入れ かわる a a 注 「定義域を求めよ」とはかいていないので,「x≧-1」は不要と思う 人もいるかもしれませんが,この値に対してyを決める規則が関数で ですから、xの範囲, すなわち, 定義域が 「すべての実数」 でない限り は、そこまで含めて 「関数を求める」 と考えなければなりません . (2) y=f(x) y=f'(x)のグラフは,凹凸が異なり,かつ, 直線

解決済み 回答数: 1
理科 中学生

中学一年理科、生きている地球の問題です。 四角4(2)②がわかりません。 答えは2枚目です。よろしくお願いします。

地層のつな いき 図は、ある地域の 地点Ⅰ 0m 地点Ⅱ 地点Ⅱ地点Ⅳ の地点Ⅰ Ⅱ. ちゅうじょう たてじく である。縦軸の目 おもりは地表からの深 における柱状表 5m- 地表からの深さ A れき岩 砂岩 m 泥岩 10m (1) 凝灰岩 IC を表している。ま EX 15m (2) ① 地点Ⅰ~ⅣVは標 とうかんかく なら だん がすべて同じであり, 一直線上に等間隔で, 地点Ⅰ 地点Ⅱ, 地点 地点の順に並んでいるものとする。 ただし、この地域には, 断 やしゅう曲、地層の上下の逆転はなく, 地層が一定の方向に傾いて 広がっている。 (茨城県改題) ぎょうかいがん かたむ 図の凝灰岩のように,遠く離れた地層が同時代にできたことを調 べる際の目印となる地層を何というか。 地点Ⅰ~Ⅳをふくむ地域の地層が堆積した環境について 次の① ②の問いに答えなさい。 すな どろ ① れき, 砂,泥のうち, 河口からもっとも離れた海底に堆積する ものはどれか。 ②地点Ⅲが堆積した期間に、この地域の海の深さはどのように変 化したと考えられるか。 図の地層の重なり方に注目して書きなさ い。なお, A~Cは海底でつくられたことがわかっている。 3 地点ⅣVを調べたとき, 凝灰岩がある深さとしてもっとも適当なも のを、次のア~エの中から1つ選びなさい。 ア 19~20m イ24~25m ウ 29~30m エ34~35m じょうはつざら すうでき 04 岩石Xのかけらを採取し, 蒸発皿に入れ, うすい塩酸を数滴かけ たところ、気体が発生してとけた。 岩石 X として適当なものを,次 のア~エの中から1つ選びなさい。 がん ア斑れい岩 イ 安山岩 せっかいがん ウチャート エ石灰岩 (3

未解決 回答数: 1
数学 高校生

青チャ数Ⅰ重要例題9の(3)の2個目の=から何をしてるのかよく分かりません。教えて欲しいです🙇‍♂️

(3) (a+26+1)(a²-2ab+4b2-a-26+1) 基本 前ページの例題同様,ポイントは掛ける順序や組み合わせをすること (1) 多くの式の積は,掛ける組み合わせに注意。 4つの1次式の定数項に注目する。 (-1)+(-4)=(-2)+(-3)=-5であるから (x-1)(x-4)×(x-2)(x-3)=(x2-5x+4)(x2-5x+6) 共通の式が 出る。 (2)おき換えを利用して,計算をらくにする。b+c=X, b-c=Y とおくと (与式)=(x+α)2+(X-a)+(a-Y)'+(a+1)^ (3)( )内の式を1つの文字α について整理してみる。 CHART 多くの式の積掛ける順序・組み合わせの工夫 (A)=8A(a-b)+2(a+b)(p) (p (1) (与式)={(x-1)(x-4)}×{(x-2)(x-3)} 解答 ={(x²-5x)+4}×{(x2-5x)+6} (2)(x+=(x2-5x)'+10(x2-5x) +24 =x-10x3+25x2+10x2-50x+24 33 =x-10x3+35x2-50x+24 L psx25x=Aとおくと (A+4)(A+6) =A2+10A+24 (ph (2) (与式)={(b+c)+a}+{(b+c)-a}2 (pa)-( " (DAN) - "A =+ {a-(b-c)}+{a+(b-c)}2 ++ =2{(b+c)2+α2}+2{a2+(b-c)2} =4a2+2{(b+c)'+(b-c)2} =4a²+2.2(b²+c²) =4a²+46'+4c2 (1+ 4 4(x+y)+(x-y) =2(x2+y^) となること 利用。 (3) (与式)= {a+(26+1)}{α-(26+1)a+(46°-26+1)}(a+●)(a^-▲a+■ =α+{(2b+1)-(26+1)}a^ +{(462-26+1)-(26+1)^}a +(26+1)(462-26+1) =α-6ba+(2b)+13 =a3+863-6ab+1 (6)とみて展開。 <(p+q)(p²-pq+q²)= 注意 問題文で与えられ (与式)と書くことが

未解決 回答数: 2