学年

質問の種類

数学 高校生

この問題の クケを求める問題で、何故わざわざ平行完成を行ったのでしょうか? 解説お願いします🙏

第7問 (選択問題) (配点 16) 〔1〕 太郎さんと花子さんは, 2次曲線の性質について話している。2人の会話文を 読んで,下の問いに答えよ。 太郎: 楕円は, 2定点F, F' からの距離の和が一定である点Pの軌跡だよね。 花子 : 2定点からの距離の差が一定なら双曲線になるよね。 太郎 : 放物線は,定点F と, F を通らない定直線からの 距離が等しい点の軌跡だよね。 花子 : 楕円や双曲線の定義と放物線の定義は設定が違うね。 太郎: 定点FとFを通らない定直線からの距離の比が一 定という設定にした場合どうなるか調べてみよう。 F さい。 ここで, オ コ また、 焦点の座標 (p, 0), キ のときの楕円は, 長軸の長さ 0 である。 短軸の長さ サ のときの双曲線の漸近線は, 直線 y= xをx軸方向 に シ だけ平行移動したものである。 イ I |の解答群 (同じものを繰り返し選んでもよい。) O p ① 2p ②が ③ 2p ④ (1+rz) ⑤ (12) ⑥(1-r) ⑦ オ キ の解答群 (同じものを繰り返し選んでもよい。) 方程式は (1) F(c, 0, F'(-c, 0) のとき, 2定点F, F' からの距離の和が2αである楕円の 0 r>1 ① 0<r<1 (2 r=1 ク コ の解答群 (同じものを繰り返し選んでもよい。) Q2 62 =1 ただし, b2= ア の解答群 10~0 a²+c² a²-c² ②√a²+c² 2 サ 2pr 2pr 1-2 ① 1+re 2pr √1+22 2pr ③ √1-22 p(1+r2) p(1-2) p(1+r²) p(1-r²) B 1-2 (5 1+2 √1-2 √1+22 の解答群 (同じものを繰り返し選んでもよい。) Þ √2+1 ① re-1 (3 1-re 1+re (2) 太郎さんと花子さんは定点と定直線からの距離の比が一定という設定にした場 合どうなるかを調べることにした。 すると,そのような設定の場合も2次曲線に なり,比によって, 2次曲線の形が決まることが分かった。 p > 0, r>0 とする。 点F (p, 0) からの距離とy軸からの距離の比がr:1で ある点P(x, y) の軌跡の方程式を求めると (数学Ⅱ・数学B 数学C第7問は次ページに続く。) イ 2_ x+y2 =0 となるから オ のとき,楕円を表し、 カ のとき, 放物線を表し, キ のとき, 双曲線を表す。 (数学Ⅱ・数学B 数学C第7問は次ページに続く。 数学Ⅱ・数学B 数学 C-16 数学Ⅱ・数学B 数学 C-15

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

極方程式についてです。 点Pが右側にあるときにrがマイナスになっています。これは2枚目の写真のような考え方をしているのかと思いますが、そのときの図と赤枠の図が一致していないように思い、納得できません。 どなたかご説明お願いします🤲

148 基本 例題 84 2次曲線の極方程式 を l とする。点Pからlに下ろした垂線をPH とするとき,e= な点Pの軌跡の極方程式を求めよ。 ただし, 極を0とする。 OP a,eを正の定数,点A の極座標を (α, 0) とし, Aを通り始線 OX に垂直な直線 であるよう PH 基本 81,83 指針▷点Pの極座標を (10) とする。 点Pが直線lの右側にある場合と左側にある場合に分け て図をかき, 長さ PH を 1, 0, αで表す。 そして, OP=ePH を利用してr= 0 の式)を 導くが,<0を考慮すると各場合の結果の式をまとめられる。 vl P(r,0) H A(a, 0) 解答 ℓ 点Pの極座標を (r, e) とする。 点Pが直線lの左側にあるとき PH=a-rcose (*) 点Pが直線lの右側にあるとき P(r, 0) L H OP=ePH から PH=rcos0-a よって r(1±ecos0)=±ea (複号同順) 1±ecos0≠0 であるから r=±e(a-rcos 0 ) A(a, 0) X ea r= ①または tea≠ 0 から r (1±ecos0)≠0 π 1+ecos 0 ea -r= 1-ecos 0 注意14/02/23のとき、 図は次のようになるが,(*) は成り立つ。 ea e ②から -r= ②' 1+ecos (+) P(r, 0) H 点(r, 0) と点(-r, 0+π) は同じ点を表すから, ①と②は 同値である。 よって, 点Pの軌跡の極方程式は r= ea 1+ecos 0 -a- X -rcose 検討 2次曲線と離心率 1. 上の例題の点Pの軌跡は, p.122 基本事項から、焦点 0, 準線ℓ,離心率eの2次曲線を表し, 0 <e<1のとき楕円, e=1のとき放物線, 1 <eのとき双曲線 である。このように, 曲線の種類に関係なく1つの方程式で表されることが利点である。 2.例題で,点A の極座標を (a, π) [準線 l が焦点の左側] とすると,上と同様にして、点P

解決済み 回答数: 1
数学 高校生

図が理解できません。 図の解説をお願いします🙇‍♀️

重要 例題 71 領域とxyの2次式の最大・最小 00000 連立不等式x-2y+3≧02x-y≦0,x+y≧0 の表す領域をAとする。 点(x,y) が領域 A を動くとき,y-4xの最大値と最小値を求めよ。 127 重要 70 y2-4x=kとおくと y2k x= 指針領域と最大・最小図示して々の曲線の動きを追う静ぐ 4 4 介表示 メータ表示とい k これは,頂点がx軸上にある放物線を表す。 この放物線が領域 Aと共有点をもつような 2章 頂点のx座標のとりうる値の範囲を考える。 円 へ 解答 領域A は, 3点 (0, 0) (12) (-11) を頂点とする三角形の周およ び内部を表す。 3-2 x-2y+3≧0 から 3 kが y2-4x=kとおくと が最小 最大 2x-y≦0から 11 12 ,2 y² k -2 .1(x= ① -1- 1 x y≥2x x+y≧0から 4 k (S) k が最大となるのは が最小となる 4 9 2次曲線の性質、2次曲線と領 a>0 YA x=ay-b ときである。 それは図から, 放物線 ① が点 (1,1) を通るときである。 -b 0-b このとき k=12-4(-1)=5 ( 左曲 また が最小となるのは 4 が最大となるときである。 bが最大⇔ bが最小 bが最小⇔ b が最大 それは図から,放物線 ① が直線y=2x と 0≦x≦1の範囲で接 するときである。 y=2x を ①に代入して整理するとことがで ①から 4x²-4x-k=0 ②より この2次方程式の判別式をDとすると4+1のグラスで D=(-2)-4(-k)=4+4k なお、4 D=0 とすると, 4+4k=0から k=-1 (d) (1)20 (S) このとき②の重解はx=- 2=1/21 (0≦x≦1を満たす。) 接点のx座標が 0≦x≦1 4 2 の範囲にあることを確認す これを y=2x に代入して y=1 の仕方に ある。 したがって x= 2 9 y=1のとき最小値 -1 x=-1, y=1のとき最大値5; 1 4 20

解決済み 回答数: 1
数学 高校生

sin(2θ+α)と突然でてきたαは何者ですか? どこから来たものですか?

・裏 日本 例題 140 x,yが2x2+3y^=1 CHART & THINKING 2次曲線上の点における式の値の最大・最小 2次曲線上の点は媒介変数表示が有効 が満たす方程式は、 楕円を表すことに着目。→点(x,y) は楕円上を動くことがわか 11 H x, y, 媒介変数の利用 (最大・最小) を満たす実数のとき, x²-y2+xy の最大値を求めよ。 [早稲田大〕 p.506 基本事項 2 る。 前ページの基本例題139 と同様, 媒介変数表示を利用すると, x,yはどのように表され るだろうか? ONDI それをx-y2+xy に代入して得られる三角関数の式について最大値を求めよう。 三角関数 の合成を用いることに注意。 楕円 2x2 +3y2=1 上の点 (x,y) は x 1/12 cose, y=1/13 sino (09/2 √3 00 と表されるから x² - y² + 1 xy=(√2 coso) - (√3 sino)" + √2 cosesin ・cos √√2 sino √3 =1/12/cos²d-11/3 sino+ ・cos2. 12 CP 0 = 1.1+cos 20 12 √31 12 2 22 08 √6. Deg - sin 20+ cos29+12 12 ただし sina= 0≦0<2πであるから よって ゆえに, 求める最大値は 5 12 9 1 to sino cose 6 11-cos20 3 sin (20+a)+ 1 12 baing)=(beo -1≦sin (20+α)≦1 -+ 2√6 CHOO sin 20 x² + 1² √31+1b98=(1+08) 200+0200 12_ @uia&=(x+16) 3 cos²0=- ·* sin²0= 1−cos 20 2 1+cos 20 2 5 √√6 cos a = √31 (mia √31 102 €) 70 D()=²38+ (3) a≤20+a<4π+a+88) 800)=P 1 円 bsingssinocos0=- =1/12 sin20 actio √6 sin 20+5 cos 20 +68=65+4)==√6+25 sin (20+ a) -例えば,20+α=1のと π a き,すなわち = 448-01/27 のとき最大となる。 513 4章 15 媒介変数表示

解決済み 回答数: 1