学年

質問の種類

数学 高校生

この問題の(2)(3)(4)を教えて頂きたいです🙇‍♀️ 全然わからなくて困ってます、、、。

CONNECT 10 aは定数とする。 関数 [解答] y=x2-2x+1 を変形すると を求めよ。 [1] y=(x-1)2 よって、この放物線の軸は直線x=1, 頂点は点 (1,0)である。 また x=a のときy=a2-2a+1, x=a+1 のときy=α2 x=a+1 で最小値 α2 [1] a+ 1 <1 すなわちa<0のとき [2] alla +1 すなわち 0≦a≦1のとき x=1で最小値0 x=αで最小値α²-2a+1 [3] 1 <a のとき [3] ↑ [2] O a+1 a+1 (a+1)2-40-4+3+PPnt① aiza+1-4a-4+3 (153 aは定数とする。 関数y=x2-4x+3 (a≦x≦a+1) について,次の問いに答えよ。 (1)* 最小値を求めよ。 J= (2-2) ²1 x= ・a^2 ①atic2 atlのとき最小値azza 1.2≦atl a<l atl +1≦a assat 1 1≦a≦2のとき (sasz x=2で最小値-1 332<a+l icaのとき ka つにaで最小値a²-4a+3 y=(x-23-1 頂(2,-1) x=aのときy=a^²-4a+3 x=a+1のときy=a²2a 0a+1<√ ² aconc 最小値azza 。 vaのとき x=aで最小値az4a+300+A 2 1 ○ocacy のとき メントで最小値 31 (2)* 最大値を求めよ。 TOKYO d aciのとき、x=aで a ①acl 最大値の24a+3 ②l≦a≦2 ARASSAG 1≦a≦2のとき、x=pl ③ icalcaのとき、x=a+1で a [+x8²xS=²(x-1)+²x+10 a ² za 31+x8- Sv=H_ @10<H 81+x8-18=H= >x>0 a+b 0<x-bC+0<x£* 8S1+(S-SE=81+x8-01-18) [S=1 #1² Joh mo S8 .8 TV8=EST\\?S=x* J (3) (1) で求めた最小値をm とすると, はαの関数である。この関数のグラフをかけ。 OLL.- (4) (2)で求めた最大値をMとすると, M はαの関数である。 この関数のグラフをかけ。 ¹+ y² = x² このときy=1-2-5-1

回答募集中 回答数: 0
数学 中学生

至急です。 分からないので教えてください

2年 NEL 数学課題 No.3 名前 問題 ゆたか君と潤也君が次のような会話をしています。 2人の会話を読んで、右の課題に取り組みなさい。 ゆたか: 混也くん! 授業で連立方程式習った? 潤也:おー! 今授業でやってるよ! ゆたか: 加減法とか出てきて、 難しいよね~。 潤也:そうそう! 自分は、 計算よりもグラフが好きだから、 何と かグラフを使って考えることができないかな~と思ってい ゆたか: そういえば、 春香先生も「グラフを使えばすべての問題が 解ける!」って言ってたな~。 潤也 自分もそれを聞いて、ずっと考えていたんだ。 連立方程式の解って、 組み合わせたどの方程式も成り立た せる文字の値の組のことだよね? 2つの式を成り立たせる ようなxとyの値ってことで、 1つに決まるんだよな・・・。 ってことは、つまり ............。 あっ!わかった! 連立方程式って、2つの2元1次方程式を組み合わせたも のだから、2つの式をグラフをかくためにy= に直してグラフを書けばいいんだ! の形 でも、グラフってどうやって書けばいいんだろう・・・。 ゆたか:確か、1年生のときにグラフはxとyの対応表を作ればい いって春香先生から習ったよ! 潤也ってことは、グラフもかけるから連立方程式の解を求める ことができそうだ! 【課題】ゆたか君と潤也君の会話を読んで、潤也君の考えを利用して 次の連立方程式を解きなさい。 20 x-2y=-3 y x -5. x y 5 O -5- -5 x -5 -4 -3 -2 y グラフから、この連立方程式の解は、x= 5 <-2 -3 -1 -1 0 0 y= 1 1 V

回答募集中 回答数: 0