学年

質問の種類

数学 高校生

この問題の、波線が引いてある部分って、因数分解する時に、iが入ってこないように(実数の範囲で因数分解)するために、√内が2乗の形にならないといけないってことですか?

敦 ) 分解。 分解。 さいように 因数分解ができるための条件 重要例題 44 基本43 x2+3xy+8y2-3-5y+kがx,yの1次式の積に因数分解できるとき,定数k の値を求めよ。 また, その場合に,この式を因数分解せよ。 〔東京薬大〕 指針 与式が x,yの1次式の積の形に因数分解できるということは, (与式)=(ax+by+c)(px+qy+r) 解答 の形に表されるということである。 恒等式の性質を利用 (検討 参照) してもよいが,ここで は,与式をxの2次式とみたとき, = 0 とおいたxの2次方程式の解がyの1次式で なければならないと考えて,kの値を求めてみよう。 ポイントは,解がyの1次式であれば,解の公式における内がyについての完全平 方式となることである。 P=x2+3xy+2y2-3x-5y+kとすると P=x2+3(y-1)x+2y2-5y+k P=0を x についての2次方程式と考えると,解の公式から x2の係数が1であるから, xについて整理した方がら くである。 x=-3(y-1)±√9(y-1)2-4(2y2-5y+k) 2 _-3(y-1)±√y2+2y+9-4k 2 Pがxyの1次式の積に因数分解できるためには、この解が 1次式で表されなければならない。 y よって、根号内の式y2+2y+9-4k は完全平方式でなければな らないから,y2+2y+9-4k=0 の判別式をDとすると D/4=12-(9-4k)=4k-8=0 ゆえに この2つの解をα β とす ると, 複素数の範囲で考え て P=(x-α)(x-B) と因数分解される。 k=2 < 完全平方式 ⇔=0が重解をもつ ⇔判別式 D=0 -3(y-1)±√(y+1)。 _ -3y+3±(y+1) このとき x= 2 すなわち x=-y+2, -2y+1 よって 2 P={x-(-y+2)}{x-(-2y+1)}=(x+y-2)(x+2y-1) 恒等式の性質の利用 x2+3xy+2y2=(x+y)(x+2y) であるから,与式がx、yの1次式の積に因数分解できるとする と, (与式)=(x+y+a)(x+2y+b) ・・・・・・① と表される。 ①は,xとyの恒等式であり, 右辺を展開して整理すると (与式)=x2+3xy+2y2+(a+b)x+(2a+b)y+ab となるから、両辺の係数を比較して これから,kの値が求められる。 a+b=-3,2a+b=-5, ab=k A 練習 次の2次式がxyの1次式の積に因数分解できるように、定数kの値を定めよ。 +44 また、その場合に,この式を因数分解せよ。 (1)x2+xy-6y2-x+7y+k (2)2x2-xy-3y²+5x-5y+k 73 2章 9解と係数の関係、解の存在範囲

解決済み 回答数: 1
数学 高校生

(3)で、なぜa=2の場合分けが必要なのかわかりませんでした。また、両辺をa(a-2)で割って、という説明の意味がわからなかったので、教えてもらえると嬉しいです。

★☆☆☆ 例題83 文字係数の方程式の★★★☆ 次のxについての方程式を解け。 (I) (1)x+(a-2)x-2a=0 (2) ax²-2x-a=0(3)dx-2ax+a=0 (2)(3)問題文では,単に 「方程式」 となっており、2次, 1次方程式とは限らない。 場合に分ける 思考プロセス (x2の係数) = 0 のとき 1次方程式を解く (2) (x2の係数) ≠0のとき 2次方程式を解く (例題 82参照) 。 いる。 -2 3 1 Action » 最高次の係数が文字のときは、0かどうかで場合分けせよ (1)x2+(a-2)x-2a=0より 例題 よって 10 x=2, -a (2) (ア) α = 0 のとき,この方程式は The これを解くと x=0 (イ) α = 0 のとき, 解の公式により (x-2)(x+a)=0x2+(a+B)x+αB = 0 exe -2x = 0 __(−1)±√(−1)-α(-a) 1±√α° + 1 x= a == +1>0より, これは解として適する。 a 最小公 て,各 fa = 0 のとき x=0 。 解) から、 SB (ア)(イ)より 1 ±√2+1 a = 0 のとき x= (3) ax-2ax+α = 0 より a(a-2)x=-a あるか - ac のとき (x+α)(x+β)=0 a = 0 のとき,与えられ た方程式は1次方程式と なる。 2次方程式 ax2+26′x+c=0 の解は x= 6' ±√b2-ac (ア) α = 0 のとき,この方程式は 0.x = 0 よって、 すべてのxで成り立つから, 解はすべての実数。 (イ) α = 2 のとき,この方程式は 0.x = -2 a = 0 の可能性があるか ら,いきなり両辺をαで 割ってはいけない。 3 章 2次関数と2次方程 この式は成り立たないから,解はない。 (S) 照。 (ウ) α = 0, 2 のとき x=- 1 a-2 1 2-a Mod Job a(a-2) ≠0 より 両辺 をα(a-2) で割って a = 0 のとき (ア)~(ウ)より |a=2のとき すべての実数 解なし 09- a x= a(a-2) な 1)= 1 1 a-2 2-a a = 0, 2 のとき x= 2-a Point...文字係数で場合分けする方程式の解法 方程式の最高次の係数が文字のときは,その値が0かどうかで場合分けする。 最高次の係数が0のとき,(3)のように,解がすべての実数となる場合(不定)や、解な しとなる場合(不能)もあることに注意する。 練習 83 次のxについての方程式を解け。 C (1)x2+(3-4)x-3α = 0 ■ (2) ax2+x-a=0 (3) a²x-2=2ax-a

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

至急です (4)のcを教えてください

問題1 連立1次方程式 Az=b について, 以 (7) 係数行列 A の階数を答えよ. 下の 1から 3 に当てはまるものを答 rank A = 7 えよ.ただし, 1 0 -1 0 -2 1 (8) 拡大係数行列 [46] の階数を答えよ. rank [Ab = 8 0 1 1 0 1 -2 A = b -1 0 1 1 1 3 (9) 次の文の 9 「には,「もつ」か 「もたない」 のいずれかが入る. ふさわしい方を答えよ. 2 1 -1 0 -3, 1 とする. (1) 係数行列 A の階数を答えよ. rankA= 1 (2) 拡大係数行列 [ Ab ] の階数を答えよ. rank[Ab]=| 2 方程式 Az=bは解を 9 問題4 以下の 10 |から 21 に当ては まるものを答えよ . (a) 問題1から問題3の方程式で、解が存在する (3)次の文の 3 「には, 「もつ」か 「もたない」 が一意に定まらないものは問題 10 であ のいずれかが入る. ふさわしい方を答えよ. る. 10 に当てはまる問題番号を数字で答 えよ. 方程式 Ax = bは解を 3 問題2 連立1次方程式 Aæ = bについて 以 下の 4から 6 に当てはまるものを答 えよ.ただし, -20 30 A = 1 -2 121 b = 2 (b) 問題 10 の解は x=vo+C1v1+C202 と表される.ここで, C1, C2 は,任意の定数で あり, ベクトル 20, 1, 02 は, 11 " 2 -4 1 52 とする. 0 5 vo= 12 0 (4) 係数行列 A の階数を答えよ. rankA= (5) 拡大係数行列 [ Ab]の階数を答えよ. 13 4 14 17 1 0 01= 15 02= 18 , rank[Ab] = 5 0 1 (6)次の文の 6 には, 「もつ」か 「もたない」 のいずれかが入る. ふさわしい方を答えよ. 16 19 と表される. 方程式 Azbは解を 6 問題3 連立1次方程式 Aæ=bについて,以 下の7から 9 に当てはまるものを答 えよ. ただし, (c) 問題 10 |の行列Aを係数行列にもつ同 次方程式 Az=0を考える. この方程式の解は, 20 である.また,その解はæ= 21 と表される. 20 には,「自明」または「非自明」のい ずれかが入る. ふさわしい方を選んで答えよ. 2 3 -1 A = -1 2 2 b = • 21 1 1 1 -2 とする. |に当てはまるものとして,ふさわし いものを以下から選んで記号で答えよ. (ア)(イ) U (ウ) C101+C202

回答募集中 回答数: 0