学年

質問の種類

数学 高校生

二つの2次方程式をイコールで結んでそれを判別式Dとして共通の解を持つからD=0としてはいけない理由はなんですか?教えてくだい!お願いします!!!!

を早く ハイスクー A-104-56 重要 例題 102 2次方程式の共通解 00000 2つの2次方程式 2x2+kx+4=0, x2+x+k=0がただ1つの共通の実数解をも つように定数の値を定め、その共通解を求めよ。 基本的 指針 2つの方程式に共通な解の問題であるから,一方の方程式の解を求めることができ たら,その解を他方に代入することによって、 定数の値を求めることができる。 しか し、この例題の方程式ではうまくいかない。 このような共通解の問題では,次の解法 が一般的である。 41212 2つの方程式の共通解を x=αとおいて、それぞれの方程式に代入すると 2a2+ka+4=0 ...... ①, a2+α+k=0 ② これをαについての連立方程式とみて解く す ②から導かれる k=--α を ①に代入(kを消去)してもよいが、3次方程式と なって数学Ⅰの範囲では解けない。 この問題では、最高次の項である2の項を消去す ることを考える。 なお, 共通の 「実数解」 という問題の条件に注意。 CHART 方程式の共通解 共通解を x=αとおく 171 (7) T 3章 12次方程式 共通解をx=αとおいて, 方程式にそれぞれ代入すると 2a+ko+4=0 ...... ①, a2+α+k=0……… 解答 ①-② ×2 から (k-2)a+4-2k=0 ゆえに (k-2)(a-2)=0 k=2 または α=21 [1] k=2のとき よって αの項を消去。この考 え方は, 連立1次方程式 を加減法で解くことに似 ている。 2つの方程式はともに x2+x+2=0となり、この方程式 数学Ⅰの範囲では、 の判別式をDとすると D=12-4・1・2=-7 D<0 であるから,この方程式は実数解をもたない。 ゆえに,2つの方程式は共通の実数解をもたない。 x²+x+2=0の解を求め ることはできない。 [2] α=2のとき ②から 22+2+k=0 よって k=-6 このとき2つの方程式は2x26x+4=0, x2+x-6=0 すなわち2(x-1)(x-2)=0, (x-2)(x+3)=0 とな り,解はそれぞれ x=1,2; x=2, -3 α=2を①に代入しても よい。 よって、2つの方程式はただ1つの共通の実数解 x=2 以上から 共通解はx=2 =-6, 注意 上の解答では, 共通解 x=α をもつと仮定してα やんの値を求めているから 求めた値に対して,実際に共通解をもつか、または問題の条件を満たすかど うかを確認しなければならない。 共通解としてもつとき, 実数の定数kの値は 2つの2次方程式x2+6x+12k-24=0, x2+(k+3)x+12=0がただ1つの実数を であり,そのときの共通解は p.173 EX73 である。

解決済み 回答数: 1
数学 高校生

アとイは分かったのですが、ウとエが分からないので教えてほしいです。

A. a (@daM) 数 学 次のⅠ、Ⅱ、Ⅲ, Vの設問について問題文の にあてはまる適当なものを, 解答用紙の所定の欄に記入しなさい。 I 虚数単位をiとし, n を正の整数とする。 A, B を複素数でいずれも0でないも のとし,n次の整式P, (z)を 3 Pw(z) = Az"-B と定める。 ただし, 0でない複素数zを極形式でz = p (cos0+isin 0 ) と表すと きは,p>0 かつ偏角が 0≦6 < 2 の範囲となるように答えよ。 〔1〕 A, B をそれぞれ極形式で表したとき, x=41=2 AZ-B=0 A = r (cosa + i sin a) B = s (cos β +isin β) AZ-BZ=2/ とする。 ただし,r>0 かつs > 0 かつ 0≦a≦β <2" とする。 このとき,r,s,α βを用いて1次方程式 Pi (z)=0の解z を極形式で 表すと P2(2) W= √ A = 20 ア {cos イ ) +isin (イ)} 101515 となる。 ß-a ß-a n次方程式 P (z)=0のn個の解を wo, W1, ..., wm-1 とする。 ただし, k=0, 1, ...,n-1に対してwkの偏角を0kとしたとき <<< 01-1 <2πであるとする。 このとき,r,s, a, B, k,n を用いてw (k=0, 1, ...,n-1) を極形式で表すと エ +isin I ウ COS ■)} = Wk となる。 3次方程式 P3(z)=0の3つの解wo, W1, w2 が複素数平面上で表す3つ の点を頂点とする三角形の面積をSとする。A,Bがそれぞれla-il = 1/ -1- (Mab(3) 一人 入 x+x 1-4 K 0 2.-2

解決済み 回答数: 1