学年

質問の種類

数学 高校生

高1数学 場合の数です。 この問題の[2]の説明に関してです。 奇数(3通り)が2つ、4以外の偶数(2通り)にも関わらず、(3^2×2)×3 をしているのはなぜですか? 3×3×2だと思ったのですが…

6 基本 例題9 (全体)(・・・でない)の考えの利用 |大、中、小3個のさいころを投げるとき, 目の積が4の倍数になる場合は何通り あるか。 [東京女子大] 指針「目の積が4の倍数」を考える正攻法でいくと、意外と面倒。 そこで、 (目の積が4の倍数)=(全体) (目の積が4の倍数でない) 基本 として考えると早い。 ここで,目の積が4の倍数にならないのは,次の場合である。 [1] 目の積が奇数→3つの目がすべて奇数 [2] 目の積が偶数で, 4の倍数でない→ 偶数の目は2または6の1つだけで、他の 早道も考える わざ CHART 場合の数 (Aである) = (全体)(Aでない)の技活用 目の出る場合の数の総数は 答 [1] 目の積が奇数の場合 目の積が4の倍数にならない場合には,次の場合がある。 よい。) (+1) サントリー 6×6×6=216 (通り) 積の法則 (63 と書いても 3つの目がすべて奇数のときで 3×3×3=27 (通り) (うしの積は奇数。 1つでも偶数があれば は偶数になる。 [2] 目の積が偶数で,4の倍数でない場合 3つのうち、2つの目が奇数で, 残りの1つは2または64が入るとダメ。 の目であるから (32×2)×3=54(通り) [1] [2] から, 目の積が4の倍数にならない場合の数は 27+5481(通り) ( ( 和の法則 よって、目の積が4の倍数になる場合の数は 216-81=135(通り)掛け(全体)(・・・でない)

解決済み 回答数: 1
数学 高校生

高1数学Aのチャートの例題85の(2)の問題です。 メネラウスの定理に関する問題です。 解説で、最初の二行がわかりません。 教えてくれたら嬉しいです🙇‍♀️

三角 の変 理の 470 重要 例図 85 チェバの定理の逆・メネラウスの定理の逆 00000 (1) △ABCの辺BC上に頂点と異なる点D をとり, ∠ADB, ∠ADCの二等分 線が AB, AC と交わる点をそれぞれE, F とすると, AD, BF, CEは1点で 交わることを証明せよ。 AB: AR-5:43 38 VD, BC, DA との交点を,順に Q,R, S, Tとする。 2直線 QS, RT が点 平行四辺形ABCD 内の1点P を通り, 各辺に平行な直線を引き,辺AB, で交わるとき 3点 0, A, Cは1つの直線上にあることを示せ。 指針 (1) △ADB において, ∠ADB の二等分線 DE に対し P.465,466 基本事項 2,4 DA AE DB EB △ADC における ∠ADC の二等分線 DF についても同様に考え,チェバの定理の逆 を適用する。 (2)△PQS と直線OTR にメネラウスの定理を用いて QRPT SO =1 RP TS OQ ここで,平行四辺形の性質から PT, TS, QR, PR を他の線分におき換えてメネラ ウスの定理の逆を適用する。 (1) DE, DF は,それぞれ∠ADB,∠ADCの二等分線で | 内角の二等分線の定理 DA AE DC CF (1) A 3 解答 あるから DB EB, DA FA ゆえに AR AE BD CF DA BD DC = 10 EB DC FA =11 E F DB DC DA よって,チェバの定理の逆により,AD, BF, CE は1点 で交わる。 B D C 31 (2)△PQS と直線 OTR について, メネラウスの定理によ (2) トラウス QRPT SO =1 EX-A9:9J RP TS OQ D A JA at PT=AQ, TS=AB, QR=BC, PR=CS であるから 同外 BCAQ SO -=1 CS ABIOQ QABC SO すなわち =1 AB CS OQ P R BS C よって, メネラウスの定理の逆により, 3点 0, A, CはQBSと3点 0, A, C 1つの直線上にある。 注目。

解決済み 回答数: 1
数学 高校生

高1数学1のチャート102の例題についてです。 解説でやっていることは理解できるのですが、 共通解をαとおき、二つの式を繋いで、整理した式の判別式Dとして、それが=0になるように計算し、kを出すことはなぜできないのでしょうか。(2枚目) 勘違いしているところが多いので、根... 続きを読む

DOO 重要 例題 102 2次方程式の共通解 00000 2つの2次方程式 2x2+kx+4=0, x2+x+k=0がただ1つの共通の実数解をも つように定数の値を定め、その共通解を求めよ。基本 指針 570 2つの方程式に共通な解の問題であるから,一方の方程式の解を求めることができ たら、その解を他方に代入することによって、定数の値を求めることができる。しか し、この例題の方程式ではうまくいかない。 このような共通解の問題では,次の解法 が一般的である。 2つの方程式の共通解を x =αとおいて、それぞれの方程式に代入すると ①, a2+α+k=0 2a2+ka+4=0 ...... これをαについての連立方程式とみて解く。 ②から導かれる k=--α を ① に代入(kを消去)してもよいが, 3次方程式と なって数学Ⅰの範囲では解けない。 この問題では,最高次の項であるα2 の項を消去す ることを考える。なお,共通の「実数解」という問題の条件に注意。 定 CHART 方程式の共通解 共通解をx=α とおく 葬共 171 重要 122 解く。 は、 3章 11 1 2次方程式 ...... 解答 共通解を x=αとおいて, 方程式にそれぞれ代入すると 2a2+ka+4=0 D, a²+a+k=0( (2) ①-② ×2 から (k-2)a+4-2k=0 ゆえに = (x)) α の項を消去。この考 (k-2)(a-2)=0 Za F3 F45 よってまた または α=2 k=2 え方は、連立1次方程式 を加減法で解くことに似 ている。 [1] k=2のとき 0=+x+x 2つの方程式はともに x'+x+2=0 となり, この方程式 数学Ⅰの範囲では, 73 の判別式をDとすると D=12-4・1・2=-7 D<0 であるから,この方程式は実数解をもたない。 x2+x+2=0の解を求め ることはできない。 ゆえに、2つの方程式は共通の実数解をもたない。(x)-0 [2] α=2のとき ②から [22+2+k=0よってk=-60sα=2を①に代入しても このとき、2つの方程式は2x2-6x+4=0, x2+x-6=0 0 すなわち 2(x-1)(x-2)=0, (x-2)(x+3)=0 とな それぞれ x=1,2; x=2, -3 よって、2つの方程式はただ1つの共通の実数解 x= 以上から =-6, 共通解はx=2の よい。 注意 上の解答では,共通解 x=αをもつと仮定してやkの値を求めているから, 求めた値に対して,実際に共通解をもつか、または問題の条件を満たすかど うかを確認しなければならない。

解決済み 回答数: 2