学年

質問の種類

数学 高校生

20と21の問題の途中式を教えてください🙌🏻´-できるだけ詳しくお願いします、、🙇🏻‍♀️‪‪´-

Bz) 3)(x+4) +2) 3 3)(3x+1) えたので, e 食料 (2) (a+b+c)²-(a−b-c)²-(a−b+c)²+(a+b_c\² 計算の順序を工夫したり、 項のまとめ方を工夫して、公式を利用する。 (1) 4つの因数の各定数項に注目すると,(-1)+3=(-2)+42 であるから。 (x-1)(x+3)(x-2)(x+4) と組み合わせて展開すると共通な式x+2xが現れ る。 (2) b+c=X, b-c=Y と考えると, 括弧の中はα と X, a とYの式で表すことが できる。 =(x+2x-3)(x+2x-8) 答 (1) 与式={(x-1)(x+3)}{(x-2)(x+4)} ={(x^²+2x)-3}{(x2+2x)-8} =(x+2x)*-11(x²+2x)+24 =x‘+4x+4x²-11x²-22x+24 =x*+4x³−7x²-22x+24 (2) 5={a+(b+c)}²-{a−(b+c)}²_{a~(b_c)}²+{a+(b−c)}² =a+2a(b+c)+(b+c)²-a²+2a(b+c)-(b+c)² =4a(b+c)+4a(b-c)=8ab 圏 □ 19 次の式を計算せよ。 *1)(x-1)(x-3)(x+1)(x+3) -a²+2a(b-c)-(b-c)²+a+2a(b-c)+(b-c)² 20 次の式を展開せよ。 (1) *(3) (a−b)(a+b)(a²+b²)(a²+b¹) *(4) (2x−y)³(2x+y)³ (5) (a+b)²(a−b)²(a²+a²b²+b¹)² *(6) (x+2)(x-2)(x²+2x+4)(x²-2x+4) *(7) (a+b+c)²+(a+b−c)²+(b+c¬a)²+(c+a−b)² 発展問題 (2)(x+2)(x+5)(x-4)(x-1) (x²+xy+y²)(x²−xy+y²)(x*—x²y²+y¹) (2)(x+y+1)(x+y-1)(x-y+1)(x-y-1) 第1章 数と式 セント 21 (1) α について整理してから展開する。 ごり □ 21 (1)(a+b+c)(a+b2+c^-ab-bc-ca)を展開せよ。 (2) (1) の結果を利用して, (x+y-1)(x^²-xy+y^+x+y+1)を展開せよ。

回答募集中 回答数: 0