学年

質問の種類

物理 高校生

写真の問題の赤線部についてですが、問題ではvがそれぞれ45°と角度が等しいことから、 赤線部のような作図をするとOPQが二等辺三角形になりOP=OQが半径であることから交点Oが円の中心であると求めることができると思うのですが、例えばPにおける角度が30°でQにおける角度が6... 続きを読む

85 ローレンツカ 一様な電場, または一様な磁場の中で, 正に帯電 した粒子が平面内を運動した。 図に示すように,平 面内の直線上に距離Lだけ離れた2点P, Q があ り,粒子は,点Pを直線と45°をなす方向に速さ 1916.h P V x 2 荷電粒子は磁場から進行方向に垂直なローレンツカ を受け, これが向心力となって等速円運動をする。点 P, 点Qを通りそれぞれの速度ベクトルに垂直な直線 をひく(図b)。 この2直線の上に円の中心があるの で, その交点が中心0になる。点Pにおける向心力は POの向きであるから, フレミングの左手の法則より 磁場は紙面に垂直で裏から表の向きになるので、⑤が正しい。 45° で通過した後、点Qを直線と45° をなす方向に同じ速さで通過した *A-0LMPI 5MODUSERT 問1 このとき, 電場や磁場の向きとして最も なものを、 右の①~⑥のうちから一つずつ選べ。 ただし、同じものを繰り返し選んでもよい。 電場の場合: 1 磁場の場合: 2 AOO GEL Pf 45° 図 b ひ (2016) 紙面に垂直で裏から表の向き 紙面に垂直で表から裏の向き 1 V

回答募集中 回答数: 0
物理 高校生

以前にも質問させていただきました。 写真についてですが、この導体棒が回路に繋がれていない時は、ローレンツ力と静電気力が釣り合っていて、この導体棒を回路に繋ぐとP→Qに向かって電子が流れますが、この現象の理解にあたって、「物体が置いてあるテーブルを引き抜くと、(垂直効力がなく... 続きを読む

V=vBlのルーツをさぐってみよう。導体棒をvで動かすと,中の自由電 子は P→Qの向きのローレンツ力 evB を受けて移動し(図a), Q端に集ま る。 一方, P端では電子がいなくなって + が顔を出す。 この +, - が P→Qの向きに電場Eをつくり、残りの 自由電子は evBとは逆向きの静電気力 FeEを受ける。電子の移動とともにEが 増し, やがて eE=evB となって力がつ り合うと,電子の移動は止む(とは言え, アッという間のできごと)。E=vBが電 場の最終値だ。 PQ間の電位差はV=El=vBl で P が高電位側なので図cのような電池に なっている。 図 a 図b 図 C ローレンツ力と要場の2つの力を 受ける P P 高電位 電流が流れる 電磁力 磁場中で 荷電粒子が動くローレンツカ 誘導起電力 金属棒が動く BA eE V evB evB Q 低電位 F=IBU f=guB V=vBl (いずれも垂直成分が命) ちょっと一言 ローレンツ力が電磁力と誘導起電力の原因になっているという認 識も大切。 磁気ではいろいろな量の向きの決め方が登場したが,電流がつくる 磁場は右ねじで,電磁力, ローレンツ力は1つの方法 (たとえば左手) すいしょう で扱える。 誘導起電力は右ねじが推奨法。

回答募集中 回答数: 0
物理 高校生

ローレンツ力の問題についてなのですが、フレミングの左手の法則をどのように利用すれば良いのかわからないです。

基本例題 58 ローレンツカ 真空中で図の正方形 abcd の内部を磁場が紙面に対して垂直 に貫いている。いま, 質量 m[kg〕,電気量e [C] の陽子が, a から 〔m〕 離れた図の位置から ad に垂直, かつ磁場に垂直に 速さ [m/s]で入射し, aとbとの間から abに対して垂直に 磁場の外へ飛び出した。 磁場は abcdの内部のみにあり, 一様 であるとする。また,陽子は紙面内を運動するものとし,重力の影響は無視する。 (1) この磁場の向きと磁束密度の大きさを求めよ。 (2) 陽子が磁場内に入射してから磁場の外に飛び出すまでの時間を求めよ。 解答 (1) ad に垂直に入射した陽子が, ab に 垂直に磁場を抜け出たことから, 陽 子は点aを中心とする半径r[m〕 の円軌道を運動し, ローレンツ力は 軌道の中心点aを向いていたことが わかる。フレミングの左手の法則よ り 磁場の向きは紙面の表から裏の 向きである。 磁束密度をB[T〕 とす ると,等速円運動の運動方程式より POINT 指針磁場に垂直に入射した荷電粒子は、磁場から運動方向に垂直なローレンツ力fを受け,こ の力を向心力として等速円運動をする。磁場の向きは,正電荷の運動の向きを電流の向き として, フレミングの左手の法則で考える。 2² m = evB r mo よって B= (T) er (2) 磁場内の円弧は円の4 180 向心力=ローレンツカ V 2πr 4 磁場内における荷電粒子の運動 a m- n² =qvB d 分の1だから, 飛び出 すまでの時間を t〔s] とすると vt== a Tr よってt=- [s] 2v b

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

東北大学令和5年度AO入試理学部物理系の問題です。解答がない上、解きすすめ躓きました。よければ(4)以降教えていただけると幸いです。よろしくお願いします。

問2 図2のように xy平面内を運動する荷電粒子を考える. 紙面表から裏向きに磁束 密度の大きさBの一様な磁場がかけられている. 荷電粒子の質量をm, 電荷をg (g>0) とする. 重力の影響および荷電粒子の運動による電磁波の放射は無視できるとする. 以下 の問題では、粒子の速度および加速度が粒子の位置(x,y) の時間tによる微分を用いて, dx dy) および (az,ay) = dvdvy と与えられることに注意すること. (Vx, Vy) = dt' dt. dtdt (1) my 平面内での荷電粒子の速度が (vェ,y), 加速度が (azsay) のとき, 荷電粒子の運 動方程式を m, ax, ay, Us, y, 豆, B を用いて表せ. (2) 荷電粒子の時刻t = 0 での速度が (ux, y)=(V,0)であるとき,一般の時刻 t (t> 0) での速度は (ひz, y) = (V cos wt, V sin wt) となる. ここでw, V は定数で ある. この式を問 (1) の運動方程式に代入することによりωを求めよ. 次に図3のように, 一様磁場に加えて,大きさ E の一様な電場をy軸の正の向きに加 える. (3) 荷電粒子が時間によらない一定の速度 (uz, Uy) で運動しているとき,その速度 (ux, uy) を B, E で表せ. う (4) 問 (3) 一定速度 (uz, Uy) で動く観測者からみた荷電粒子の速度を (ぴっぴY), 加速 度を (ds, dy) とするとき, 運動方程式をm,d's dy, 2,4,B,Eのうち必要なも のを用いて表せ. (5) (4) において, 時刻 t = 0 での速度が (v^2)=(V', 0) であるとする. 問 (2) の 結果に注意して,一般の時刻t (t> 0) での (vay) をt,w, V' を用いて表せ.ここ 問 (2) 解である. (6) 静止している人から見て, 荷電粒子が時刻 t=0において位置(x,y)=(0,0) から 初速度(vェッuy) = (0,0)で運動をはじめた. (a) 時刻t (t > 0) での荷電粒子の速度 (vx, y) を t,w, B, E で表せ. (b) 時刻 t (t > 0) での荷電粒子の位置 (x,y) をt,w, B, E で表せ. (c) 荷電粒子はæ軸 (y = 0) から離れたあと, 時刻 t = T (T> 0) で再び軸上に 戻った. t = 0 から t = Tまでの荷電粒子の軌跡の長さLをw, E, B で表せ. 磁場B 速度(vェッy) 荷電粒子 図2 -X 磁場B 図3 電場E IC

回答募集中 回答数: 0