学年

質問の種類

数学 高校生

この問題の(2)と(3)がよく分からないので教えて欲しいです!!

144 第6章 微分法と積分法 基礎問 90 共通接線 アイは一致するので, 3d²=2a+p, -20°=q- よって, カ=3a-2a, q= -20°+α² 145 5/5 3.0 2つの曲線 C: y=x, D:y=x2+pr+g がある. (1) C上の点P(a,d)における接線を求めよ (2) 曲線DはPを通り,DのPにおける接線はと一致するこ のとき,,g をαで表せ. => '+(3)(2)のとき,Dがx軸に接するようなαの値を求めよ. ばれます (2)2つの曲線 C,Dが共通の接線をもっているということです が,共通接線には次の2つの形があります。 精講 (I型) y=f(x) y=g(x) P a (Ⅱ型) 3y = f(x) y=g(x) Q 適です。 P 違いは、 接点が一致しているか,一致していないかで, この問題は接点がP で一致しているので(I型)になります. どちらの型も、接線をそれぞれ求めて傾きとy切片がともに一致すると考え れば答をだせますが, (I型) についてはポイントの公式を覚えておいた方が よいでしょう. 解答は、この公式を知らないという前提で作ってあります. 解答 (1) y=xより,y'=3だから,P(a, α3) における接線は, y-a3-3a2(x-a) :.l:y=3ax-2a3.......ア C 0186 5 : y = (x + £ ²)² + q − 2² だから, 曲線 (3) D:y= 4 Dがx軸に接するとき,頂点のy座標は 0 D² =0 q- 4 ∴.4g-p20 よって, 4-2a3+α²)-(3-2)=0 4a²(−2a+1)-α(3a-2)2=0 a^{-8a+4-(9α²-12a+4)}= 0 a³(9a-4)=0 :.a=0, 459 注 α=0 が答の1つになること は,図をかけばx軸が共通接線 であることから予想がつきます. (2)はポイントを使うと次のようになります。 f(x)=x, g(x)=x+px+q とおくと f'(x)=3.2g'(x)=2x+p [a=a+pa+g 13a2=2a+p ポイント よって, x²+px+q=0 の (判別式) = 0 でもよい 展開しないで共通因数 でくくる YL p=3a2-2a q=-2a³+a² 10. 2つの曲線 y=f(x) と y=g(x) が点(t, f(t)) を 共有し,その点における接線が一致する f(t)=g(t) かつ f'(t)=g'(t) y-f(t) =f(t)(x-t) (2)PはD上にあるので,a' + pa+q=α ... ① また,y=x'+px+g より y'=2x+p だから, Pにおける接線は,y-d= (2a+p)(x-a) y=(2a+p)x+a³-2a²-pa y=(2a+p)x+q-a² ......①(£) 演習問題 90 第6章 関数 f(x)=x2+2とg(x)=-x+ar のグラフが点Pを共有 し、点Pにおける接線が一致するこのときαの値とPの座標を 求めよ.

回答募集中 回答数: 0
数学 中学生

23ページは⑷、24ページは2のエ〜コまで、25ページは⑷を教えてください。一つでも大丈夫です!!

日 点 Step B 図1のような, 縦5cm 横8cmの長方形の紙Aがたくさんある。 Aをこの向きのまま、 図2 のように,m枚を下方向につないで長方形Bをつくる。 次に, そのBをこの向きのまま図3 のように右方向にn列つないで長方形Cをつくる。 長方形の【つなぎ方】 は,次の(ア)(イ) のいずれかとする。 はば (ア) 幅1cm重ねてのり付けする。 とうめい (イ) すき間なく重ならないように透明なテープを貼る。 数N の倍 【つなぎ方】 長方形の紙A 長方形 B 長方形 C 長方形 C 8cm 8cm -31cm 右 8cm 5cm m枚 9cm -1cm m枚 1cm テープで貼る 下 第1章 23 145 第6章 実力テスト n列-- (図1) (図2) (図3) のり付けして重なった部分 (図4) 例えば、図4の ①10×40=400cm² (イ)で2回つな 横の長さが31 '58 129×2+13×3 (2)(8×4-3)×2×1+(5×3-2)×3×1-6 り,そのBを4列, (ア) で1回, 39 -691cm² 4であり, たての長さが9cm, 39cm となる。 [栃木] (1) 【つなぎ方】は,(3) たこのとき,Cの面積を求め なさい ( 10点 べて (2) 【つなぎ方】 表せ なった部分の (4) あるか =102 皮」で 世院高] た。 このとき, のり付けして重 (3)A をすべて (ア)でつないでBをつくり, そのBをすべて(イ)でつないでCをつくった。 Cの 周の長さをlcm とする。 右方向の列の数が下方向につないだ枚数より4だけ多いときは6 の倍数になる。このことをmを用いて説明しなさい。 ( 15点) (4)Cが正方形になるときの1辺の長さを短いほうから3つ答えなさい。(10点) 23

回答募集中 回答数: 0