学年

質問の種類

物理 大学生・専門学校生・社会人

量子力学の問題です。 わかる方おられませんか

2. 外部磁場中の荷電粒子の量子力学、 Landau 準位 ベクトルポテンシャル A(t,x)、 スカラーポテ ンシャル (t,x) がある3次元空間の中を質量m、 電荷eをもつ荷電粒子の運動を考える。 その運動量 をp、 位置座標をェとすると、 荷電粒子を記述するハミルトニアンは以下で与えられる。 1 H(t, z,p) = -(p- eA(t, x))² + eo(t, x) 2m (1) (1) この荷電粒子を表す波動関数を重(t,x) としたとき、 確率密度と確率の流れの密度は、ベクトルポ テンシャルがない (演習問題No.1の) 場合に対し微分∇を 「共変微分」Dに置き換えることで 得られることが知られている。 p:=²=v*v, J:= {*D-(D)*} ここで、 2m D:= V-ie A, +∇ ・J=0が成立することを示せ。 とおいた。このとき、連続の方程式 (2) 電場E = -Vo-b と磁場 B = ∇×4が次の(ゲージ) 変換で不変であることを示せ。 at 以下電場はなく、静磁場のみがある場合を考え、磁場が向いている方向を軸とする: B = (0,0,B) Əx AA'′=A_∇入, 中→d=6+ at ここで、 入 = \(t,x) は任意のスカラー場である。 さらに荷電粒子の波動関数も同時に →=e-ie (5) と変換させた場合、 Schrodinger 方程式場=H(t,x, l∇)が変換した場に対しても同様に成 立することを示せ。 A = (0, Bx, 0) にとって、とzに依存しない波動関数 (x,y) を調べる。 (2) このとき、トの取りうる範囲を求めよ。 (3) この背景の下で縦と横の長さがLz, Ly の長方形状の十分薄い平板を0に {(x,y)|0 ≤x≤LT, 0≤y≤Ly} (7) のように置き、この平板内に束縛される荷電粒子の運動を調べる。 このとき、以下のように、ベクト ルポテンシャルを Landau ゲージ (8) (4) このことを、Schrodinger 方程式がゲージ変換のもとで共変性をもつor 共変的である、などという。 同じ量子数をもつ状態がなす部分ベクトル空間の次元のことをその状態の縮退度と呼ぶ。 (6) (3) 波動関数 (x,y)=(x)eikyのように変数分離して荷電粒子に対する時間に依存しない Schrodinger 方程式を解き、 固有関数とエネルギー固有値を全て求めよ。 ただし、演習のプリントで与えられ た特殊関数は説明なしに用いて良いものとし、 規格化も行わなくて良い。 (4) 波動関数 (x,y) は方向に周期境界条件を満たすとする。 v(x, y) = v(x,y + Ly) (5) 基底状態に対しょ軸の位置演算子の期待値 (z) をe, B,kを用いて表わせ。 また、 位置演算子の期 待値が平板内に存在する条件から、 基底状態の縮退度を求めよ。

未解決 回答数: 1
物理 高校生

ホイートストンブリッジです。(2)まではいいのですが(3)がどうしてもわからないです。 なぜ電流計が0だと(1)と電圧が同じになるんですか? あとの計算でV1=80×10^-2 としてますが、これは(1)と流れる電流が同じということですよね?したら(1)のようにキルヒホッフ... 続きを読む

必修 11. 電流と磁場, 荷電粒子の運動 基礎問 電流と磁場 Ⅰ. 図1のように,長い導線を水平に南北方向に張り,そ の真下の距離 10 [cm] のところに小さな磁針を置いて、 導線に電流を流した。このとき,磁針のN極は西に 45° 振れて静止したことから,この場所での地球の磁場の強 さの水平成分は 25 〔A/m〕 であることがわかった。 (1) 導線にはどの向きに電流を流したか。 (2) 流した電流は何 〔A〕 だったか。 (3g) 次に導線を取り除き、かわりにコイルの頭を南北方向と垂直になるよ うに1巻きの円形コイルを置き、その中心の磁場が0となるようにした い。 円形コイルの半径を20〔cm〕 とすると, コイルに流すべき電流の強 79 さは何 〔A〕か。 ⅡI. 図2のように、紙面に垂直な導線P, Qに同じ強さIの 直線電流が流れている。Pの電流は紙面の裏から表に向か う向きに,Qの電流はPと逆向きに流れている。導線P. Qからの距離がともに4の紙面上の点Xに生じる磁場の (福岡大改・愛媛大) 強さを求め、その向きを図示せよ。 I H=- (r: 電流からの距離) 2πr () 円形電流の中心の場合 北 H=- ( r円の半径) 2r 45 C 15+0=3 P 0 10cm 図1 XA a. 3. ●地磁気 地球は北極をS極,南極をN極 精講 とする大きな一つの磁石であり,地表には 地球による北向きの磁場が存在する。 これを地磁気という。 【参考】 磁気量 (磁極の強さ) をmとすると, 強さHの磁場 から磁極が受ける力の大きさFは,F=mH である。 ●電流がつくる磁場 電流がつくる磁場の強さは電流の強さに比例するが, そ の強さを与える式は電流の形状によって異なる。 電流Iがつくる磁場の強さを Hとすると 電流ⅠⅡ (i) 直線電流 ( 十分に長い) の場合 a 図2 H 磁場 (A) SLO TA a 1 Gir Q ルの内部の場合 ソレノイドコイ H=nl (n: 1 〔m〕 あたりの巻数) ●右ねじの法則 右ねじの進む向き ●京靴の向きにとると、右ねじを回す 向きが磁力線の向きを表す。この 磁力 磁力線の向きの接線方向が磁場の間 である。 磁場 クトル和である。 ●磁場の合成 複数の電流による磁場は、各電流がその場所につくる磁場のベ I. (1) 磁針の向きより, 合成磁場の向きは北向 真上から見た図 きから西へ45° 振れているので、 導線の電流が 45 つくる磁場は西向きである。 よって, 導線を流れる電流の向き は、右ねじの法則より, 北向きである。 (2) (1)より、導線の電流がつくる磁場の強さをH [A/m] とす ると, H=25 [A/m〕 である。 電流の強さをI〔A〕 とすると, I 2×0.10 よって,I=5=5×3.14≒16 [A] (3) 円形コイルの中心の磁場が、 地磁気と逆向きで、同じ大き H= -=25 さであればよい。 コイルに流す電流の強さをI' 〔A〕 とすると, I' VI I 2ла 磁場H I. (1) 北向き Ⅱ. 磁場の強さ: -25 よって, I'=10 [A] 2×0.20 TARS KAME I. 導線P, Q の電流がそれぞれ点Xにつくる磁場の強さを H, HQ とすると, I 2лα H Hp=Ho= 導線 P, Q の電流がつくる磁場の向きは右図となる。 磁場の強さが等しく, なす角が120° であることより,合成磁場 の向きは右図の太い矢印の向きである。 また, 合成磁場の強さ Hx は , Hp (または HQ) と正三角形をつくることより, (2) 16 〔A〕 I 向き 2ла' Hx=Hp= 【参考】 成分で求めると, Hx=Hpcos60°×2=He となる。 北 R÷Á÷AN….... (3) 10 (A) a の図 磁力線 .25 [A/m) 電流 磁場 H₂O H60060° Far-102043: H₂ 図 a Q 第4章 電気と磁気 流と磁場, 荷電粒子の運動 177

回答募集中 回答数: 0
物理 高校生

EX4で、なぜ2πでωを割るのかわからないです。

(x) B' S=12で, dB dt dt はグラフの傾きである。 $ 72* 半径aの円形領域で,紙面の裏から表へ向かう磁束密 度が単位時間あたりの一定の割合で増している。 半径 のコイルに生じる誘導起電力の向きはXかYか。 また, その大きさを, (1)r≦a と(2)r>αの場合について求 めよ。 dt EX 4 半径r[m]の円形レールの一部をカットし、中 心と端Aを抵抗 R [Ω] で結ぶ。 OP は金属棒 で, 時刻 t=0 に OA の位置から一定の角速度 ③ [rad/s〕 で反時計回りに回転させる。 磁束密度 B [Wb/m²] の磁場が紙面の表から裏の向きにか かっている。 R以外の抵抗はないとする。 (1) 時刻t [s] においてコイル OAP を貫く磁束を求めよ。 (2) OA を流れる電流の強さと向きを求めよ。 .. V= V Brew R 2R /X V=(rw+0) Br=Brw 2 少々手荒いが、 分かりやすさが取りえ! V B (1) OP は角度wt回転している。 扇形OAP の面積は円の面積 πr² を中心 wt で比例配分し, S=πr2x- p=BS=Br³wt (Wb] 2π (2) この結果より 40=1/2 Brwat B O R a B I 〔A〕 上向きの磁場をつくる向き,すなわち0Aの向きに流れる。 tro ト色 導体棒が動いているのでBlを利用する手もある。 ただ, 速さ OP 間の場所ごとに違う。 Pは最大の速さで rw, 0 は最小で0 から”としては平均の速さを用いる。 3 V P

回答募集中 回答数: 0
物理 高校生

EX4で、なぜ2πでωを割るのかわからないです。

(x) B' S=12で, dB dt dt はグラフの傾きである。 $ 72* 半径aの円形領域で,紙面の裏から表へ向かう磁束密 度が単位時間あたりの一定の割合で増している。 半径 のコイルに生じる誘導起電力の向きはXかYか。 また, その大きさを, (1)r≦a と(2)r>αの場合について求 めよ。 dt EX 4 半径r[m]の円形レールの一部をカットし、中 心と端Aを抵抗 R [Ω] で結ぶ。 OP は金属棒 で, 時刻 t=0 に OA の位置から一定の角速度 ③ [rad/s〕 で反時計回りに回転させる。 磁束密度 B [Wb/m²] の磁場が紙面の表から裏の向きにか かっている。 R以外の抵抗はないとする。 (1) 時刻t [s] においてコイル OAP を貫く磁束を求めよ。 (2) OA を流れる電流の強さと向きを求めよ。 .. V= V Brew R 2R /X V=(rw+0) Br=Brw 2 少々手荒いが、 分かりやすさが取りえ! V B (1) OP は角度wt回転している。 扇形OAP の面積は円の面積 πr² を中心 wt で比例配分し, S=πr2x- p=BS=Br³wt (Wb] 2π (2) この結果より 40=1/2 Brwat B O R a B I 〔A〕 上向きの磁場をつくる向き,すなわち0Aの向きに流れる。 tro ト色 導体棒が動いているのでBlを利用する手もある。 ただ, 速さ OP 間の場所ごとに違う。 Pは最大の速さで rw, 0 は最小で0 から”としては平均の速さを用いる。 3 V P

回答募集中 回答数: 0