学年

質問の種類

数学 高校生

数3です!無理方程式・不等式のグラフを用いるときと用いないときの違いはなんですか?

30 0OO000 基本例題 81 無理方程式·不等式 (2) 次の方程式,不等式を解け。 (1) V10-x=x+2 738 v2x+6>x+1 (2) Vx+2Sx 命題 基本0 る。 CHARTO グラフを用いない無理方程式· 不等式の解法 2乗して をはずす /A20, A20 に注意 方程式の場合(1) A=B→ A'=B° は成り立つが, 逆は成り立たない。 「をはずして得た解が最初の方程式を満たすかどうか確認する。 不等式の場合(2), (3) AZ0, B20 ならば A>B→ A°>B° が成り立っ 両辺を2乗する前に条件を確認する。必要に応じて場合分け。 OLUTION ば 解答 (1) 方程式の両辺を2乗して 整理すると x?+2x-3=0 10-x=(x+2)? ゆえに(x-1)(x+3)30 - 2x+4x-6=0 よって x=1, -3 x=-3 は与えられた方程式を満たさないから (2) x+220 であるから また, x2Vx+220 から このとき,不等式の両辺はともに0以上であるから, 両辺を 2乗して x=-3 を代入すると (左辺)=1, (右辺)=-1\ x=1 x2-2 の x20 x+2<x° ゆえに (x+1)(x-2)20 よって xS-1, 2<x 求める解は,O, ②, ③ の共通範囲であるから 2② x22 あケ精のて2 -1.0 2 (3) 2x+620 であるから [1] x+120 すなわち x>-1 不等式の両辺はともに0以上であるから, 両辺を2乗して x2-3 ②のとき 囲 ③ 整理すると x<5 これを解いて 0, 2, ③ の共通範囲を求めて [2] x+1<0 すなわち x<-1 のとき V2.x+620, x+1<0 であるから, 不等式は常に成り立つ。 このとき, ① との共通範囲は 求める解は, ④, ⑤ を合わせた範囲であるから -3Sxく/5 -1Sx</5 -3-15- 4) 15* -3<x<-1 5 []または [2] を満たす 範囲。 乗ば

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

ルートの扱い方を復習していたらよくわからなかったのですが まず、ルートの中が0以上になることはわかるのですが、今までなんとなくしか理解していなかったので教えていただきたいです。 ア→これは右辺が0以上を条件にしていますが、何故ルートの中が0位上と言うのを確認していないの... 続きを読む

-●3 ルートがらみの方程式 不等式を解く (京都産大 (ア)(2.z-2 =1-2.zを満たす実数zの値は である。 (イ)V5-z<z+1を解け。 (ウ)不等式(3-2.r 22.zー1を解け。 (龍谷大·理系(推薦) (東京都市大) ルートがらみの方程式·不等式のことを,無理方程式·無理不生 図形問題を解くときにも現れる 式と言う。教科書的には数Ⅲの内容だが, 図形問題を解くときにも(解法によっては)現れること るので,ここで練習しておくことにしよう。 解くときの注意点 *2乗すると同値性がくずれる. 例えば, A=B=→ A?=B? であるが, A?=B?#A=Ra+ (例えば、 A=-2, B=2のとき, A?=B'だが, A=Bではない). また, AZB# A?2 33であ る(例えば、A=1, B=-2のときを考えよ).「AZB → AB'」という同値変形ができるの は,A20かつB20のときである。両辺が0以上なら, 2乗しても同値である。 *ルートの中は0以上であり, 実際にどのようにするかは, 以下の解答で 2乗してルートを解消するが, その際に注意が必要である. の値は0以上である。 ■解答 ○0のとき,右辺20により 2.ェーェ20であるから, ルートの 中は0以上であることが保証 (ア)(2.z-22 =1-2.r → 2.ェー2=(1-2.x)? 0 かつ1-2.r20 のを整理すると, 5.z?-6.r+1=0 .(r-1)(5.r-1)=0 1 れる。 1-2.r20を満たすェを求めて, x=- 5 コェ+1>/5-ェ N0により, エ+1>0. (イ)/5-r<ェ+1 → 5-x z0かつ ェ+1>0かつ5-ェ<(r+1)? -1<zS5 かつ 22+3.x-4>0 -1<z<5 かつ (エ+4)(r-1)>0 コ-1<r<5のとき, エ+4>0 (ウ)/3-2r >2.r-1…① のとき, 3-2.cN0 3 IS- 2 1° 2かつ 2.z-1<0, つまり ェくうのとき, ①は成り立つ。 介日の右辺の符号で場合分け. @ のとき,①の右辺<0なら①は成 2 1 3 2° 2かつ 2.z-120, つまり 名zハ%のとき, ①の両辺を2乗しても 立。 2 2 同値で、 3-2.z2(2ェ-1)? : 2.22-ェ-1ハ0 4.z2-2.ェ-2<0 :(2ェ+1)(e-1)<0 1であり。zs とから、ら1 3 よって - 2 1°, 2°により, 答えは, x<1 3 演習題(解答は p.55) (ア)方程式(z?+/z +z-l=0を解け。 (イ)不等式V3.?-12 Sz+4を満たすェの範囲を求めよ。 (ウ)不等式(4.ーz" >3-xを満たすェの範囲を求めよ。 (札幌学院大) (明治大·理工) ルートの中は0以上, な; どに注意して解いてい く。 (学習院大·理) 3-2 1 く-を満たす』の値の範囲は (エ) 2r である。 (関西医大)

解決済み 回答数: 1
数学 高校生

(ア)で、2x -x^2≧0を答えに反映させなくてよいのはなぜですか?

3ルートがらみの方程式 不等式を解く コである。>- の(ア)/2.ォ-%3D1-2rを満たす実数:の値は の(イ)(5-』 <z+1を解け、 のウ)不等式/3-2r22z-1 を解け。 (京都産大·理系) (龍谷大·理系(推薦) (東京都市大) ルートがらみの方程式 不等式のことを, 無理方程式· 無理不集 図形問題を解くときにも現れる 式と言う、教科書的には数Ⅲの内容だが, 図形問題を解くときにも(解法によっては)現れることがあ るので, ここで練習しておくことにしよう。 解くときの注意点 2乗すると同値性がくずれる. 例えば、A=B→ A?=B°であるが, A'=B? =D A=Bである (例えば,A=-2, B=2のとき, A=B? だが, A=Bではない). また, AZB→ A?>B2であ る(例えば,A=1, B=-2のときを考えよ). 「AZB → A2B'」 という同値変形ができるの は、A20かつB20のときである。両辺が0以上なら, 2乗しても同値である. ルートの中は0以上であり, / 実際にどのようにするかは, 以下の解答で. 0 2乗してルートを解消するが, その際に注意が必要である。 の値は0以上である。 5. 27ーズ20が要けうが、ス(2ーx)2o。 x全0.2 % ■解答 (ア)V2.ェーェ2 =1-2.c → 2.ェーa?=(1-2.)? ……① かつ1-2.c20 のを整理すると, 5.z?-6.c+1=0 Gののとき,右辺20により 2.ェー2?20であるから, ルート 中は0以上であることが保証 れる。 (z-1)(5.c-1)=0 1-2.ェ20を満たすェを求めて, c= 1 1227 し2%

回答募集中 回答数: 0
2/2