学年

質問の種類

数学 高校生

青チャート数Bの統計の分野です。 P(k)までは合ってるっぽいんですけど、以降の計算でΣ[k=1,n-2]kP(k)を、P(n-1)とP(n)は0だと思ったのでΣ[k=1,n]kP(k)にして計算したら間違ってました。おそらく何か勘違いしてるので、どなたか説明してくれませんか。

(2) E(X)-kp-kn(n-1) n(n-1) (nk-k²) = n(n=1) {n • \/ \n (n+1)= | | (n+1)(2n+1)} 2 = n(n-1) = n(n+1)(3n-(2n+1)) n+1 6 3(n-1)(n-1)=n+1 3 また E(X)=R²-k²- 2(n-k) n(n-1) n(n-1) (nΣk²-k³) 2 72° また、に関係しない の式を 前に出す。 =(n+1) -n(n+1)(2n+1) =(-1) { //1n(n+1)(2n+1)-1/13r(n+1)} = 1/2(+1) n(n+1) 6 よって_V(X)=E(X*)-{E(X)n(n+1)_(n+1) (n+1)(n-2) 18 本 (nは3以上の整数) のくじの中に当たりくじとはずれくじがあり、そのうちの ② 66 2本がはずれくじである。このくじを1本ずつ引いていき、2本目のはずれくじを 引いたとき、それまでの当たりくじの本数をXとする。 Xの期待値E(X)と分散 V (X) を求めよ。 ただし, 引いたくじはもとに戻さないものとする。 [類 新潟大 p.519 EX 39.40 出るこ るときであるか [2]Zのとりうる よって、(1)から 二項定理により ゆえに、 Zn個の確率 副題の(2)は,次 knに対し X. 2 Xs........ EC 2以上の自 勝った人の数 (1) ちょうど (2)Xの期待 X-Omer P(x+c) = t h PD U ( n n y ) Ci me Pry=2)= (+ 1-2 A-3) 3 (+ P ht (n-2) -3 n-14 h (例2 (Pf) (=(n-2)/(h= h-1-k (h)! n(h+1) \^<2)! (^^-*) W (m-k)? (+) Ex)=l=k-1 2k+1) =h(n-1) ht 573072. pm. Proof={ \+) (2011) + {ach+i)} = +11 + (2n++ b + 4) h-1 2(n+1)(nt) == n-1. 3(h-1)

回答募集中 回答数: 0
数学 高校生

⭐️数学が好きな方・得意な方へ こちらの確率の問題を解いていただきたいです。答えはないです😔数Bの内容です。お願いします🙇

さいころを同時に3個投げ、 出た目の組み合わせで勝ち負けが決まるゲームがある。 以下の目の組み合 わせのときに、 さいころを投げた者の勝ちとする。 4、5、6の組み合わせ (すべて1個ずつ) または ゾロ目 (111、222、333、444555 666) このとき、 以下の問いに答えよ。 (1) 普通のさいころを3個使ってゲームを1回する場合、 勝ちとなる確率を求めよ。 (2)4~6の目が2つずつある特殊なさいころを3個使ってゲームを1回する場合、 勝ちとなる確率を 求めよ。 (3) Aさんは普通のさいころ3個と、(2)の特殊なさいころ3個のどちらを使うかを毎回選び、 連続して 100回のゲームをして、 できるだけ多くの勝ちを得たいとする。 ただし、 A さんが (2) の特殊なさい ころを使ったと B さんに判断されないようにしたい。 特殊なさいころを使う頻度とタイミングにつ いて、 仮説検定を用いて考えよ。 ただし、 有意水準は5% とし、Aさんがどちらのさいころを使っ たか Bさんは毎回わからないものとする (B さんは仮説検定を用いて、 A さんのさいころの使用に ついて検討する)。 答えを導くまでの過程は式も含めて丁寧に書くこと。

回答募集中 回答数: 0