学年

質問の種類

化学 大学生・専門学校生・社会人

至急 有効数字について この問題だと有効数字の幅が8.35〜8.45で、実際の誤差幅は8.27〜8.51です。 有効数字は数値がどこまで信頼出来るかを示した物だと思うのですが、仮に体積が8.51だったら、有効数字で示した値の中に答えが含まれていないことになります。 これは... 続きを読む

問題1-10 電卓を用いて以下を計算せよ. (1) 2÷7 (2) 直方体の体積を求めるために, Aさんが縦の長さ, Bさんが 横 Cさんが高さを測定した. 彼らはそれぞれ10cm, 1cm, 0.1mm刻みの精度の異なったものさし定規を用いて測定してし www 10cm まい, これらの値として4.2m,234cm, 85.35cm を得た. 直方 体の体積はいくつと表示するのがベストだろうか, 数値はどこま で信用できるだろうか. 0.1mm 1 cm (2)単位を合わせると 4.2m, 2.34m, 0.8535m となるので, 4.2m×2.34m×0.8535m= 8.388198m² なる値が求まる. しかし, 4.2mという測定値は4.15 4.2 4.25を四捨五 入して得た値なので4.2m±0.05m を意味する。 つまり、この値は±0.05m (± 0.05/4.2 ×100=±1.2%) の誤差をもつ。 同様に2.34mは2.34±0.005 (誤差± 0.005/2.34×100= ± 0.21%), 0.8535m は 0.8535 ± 0.00005 (誤差± 0.00005/0.8535 × 100=0.006%) を意味す る. したがって、この値を用いて計算した8.388198m² なる体積は± 1.2% ± 0.21% ± 0.006% =±1.4% の誤差をもつ つまり (8.388198 ± 0.117435) m である. それゆえ,この直 方体の体積は8.388 0.117=8.39 ±0.12(8.27~8.51)=8.4m² と表せば十分である. 8.4 の意味は 8.35~8.45 であり、 実際の誤差幅よりも小さい. 8.4 という答ですら多 めの有効数字を示したことになる.つまり,計算結果は4.2, 2.34, 0.8535の三つの測 定値の有効数字の桁数 2, 3, 4桁のうちのもっとも小さい桁数2桁に合わせて示せばよ いことがわかる (1桁下の3桁目を四捨五入して示すのが常識) 実験データ処理におけ る有効数字の扱いは, 以上のように測定値の精度に依存する すなわち, 有効数字は測定値の精度を反映したものである. 1000's GD 01 (0 0800.0 -0.21% 12% 12% x6/180.18=0.3999(0.4000)

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

(1)から分かりません。なぜこのようなグラフになるんでしょうか?

123 3章 8 関数とグラフ つけ。 かけ。 重要 例題 立つ。これを場合分けに利用 幅1の範囲で区切り ≦2x<2,2x=2で場合分け、 1≦x<2, x=2で場合分け、 =-2 -2-101 きy=-2 (2) y=-1 71 定義域によって式が異なる関数 関数f(x) (0≦x≦4) を右のように定義すると 次の関数のグラフをかけ。 (1) y=f(x) 指針 (2)y=f(f(x)) 2x (0≦x<2) f(x)= 8-2x (2≤x≤4) 定義域によって式が変わる関数では, 変わる 境目のxyの値に着目。 (2)f(f(x)) f(x)のxにf(x)を代入した式で、 f(x) <2のとき2f(x) f(x)のとき 8-2f(x) (1)のグラフにおいて,0≦f(x) <2となるxの範囲と, 2≦f(x)≦4 となるxの範囲 を見極めて場合分けをする。 (1) グラフは図 (1) のようになる。 (2f(x) (0≦f(x)<2) (2) f(f(x))= 18-2f(x) (2≤f(x)≤4) よって, (1) のグラフから 0≦x<1のとき 1≦x<2のとき 2≦x≦3のとき f(f(x))=2f(x)=2.2x=4x f(f(x))=8-2f(x)=8-2.2x =8-4x f(f(x))=8-2f(x)=8-2(8-2x) =4x-8 3<x≦4のとき f(f(x))=2f(x)=2(8-2x) 変域ごとにグラフをかく。 < (1) のグラフから,f(x) の変域は 0≦x<1のとき 0≤f(x)<2 1≦x≦3のとき ① 2≤f(x)≤4 3<x≦4のとき 0≤f(x)<2 また, 1≦x≦3のとき, f(x) の式は y=0 1≦x<2なら =16-4x f(x)=2x y=1 よって, グラフは図(2) のようになる。 y=2 (1) (2) y ya =x+1 -1 2 A M O 1 2 3 4 x 0 1 2 3 4 x 2≦x≦3なら f(x)=8-2x のように, 2を境にして 式が異なるため, (2) は左 の解答のような合計4 通 りの場合分けが必要に なってくる。 -2=0 an x= ntpと表されるとき、 とき, 01より xの整数部分を表す記号であ 参考 (2) のグラフは,式の意味を考える方法でかくこともできる。 [1]f(x) が2未満なら2倍する。 [2]f(x) が2以上4以下なら, 8から2倍を引く。 [右の図で、黒の太線・細線部分が y=f(x), 赤の実線部分が y=f(f(x)) のグラフである。] なお,f(f(x)) f(x) f(x) の 合成関数といい, (fof) (x) と書く (詳しくは数学Ⅲで学ぶ)。 とする。 8から2倍を 引く 4 2 0 4 x 2倍する 練習 関数f(x) (0≦x<1) を右のように定義するとき, ◎ 71 次の関数のグラフをかけ。 2x (0 ≤ x < 1/1) f(x)= (1) y=f(x) 2x-1 (2) y=f(x)) 11/1/1≦x<1)

回答募集中 回答数: 0
生物 高校生

3の(3)と5の解説をお願いします!ちなみに5の答えは6通りです

プロセス 次のを、地球上に出現した並べ替えよ。 DNAが遺伝情報をタンパク質が触媒作用を担う生物。 タンパクを担う生物。 RNA情報と作用の両方を担う生物。 DNAの塩基配列に生じる変化について、以下の各問いに答えよ。 (1) DNAが起こる現象を何と呼ぶか。 Process (2) 血液中の酸素の不足によって赤血球が変形し、 それが原因でさまざまな症状を引き 起こすヒトの遺伝病を何というか。 (3)個体間にみられる, 一連の塩基配列中での塩の違いを何というか。 ヒトの染色体数は2=46であり、そのなかには染色体が含まれている。 常染色体の数を答えよ。 女性男性の性染色体の組み合わせをそれぞれ記 と椅子の染色体構成はそれぞれどのように表されるか、核相と常染色体の数22+X 染色体の記号を使って答えよ。 次の いに答えよ。 は、減数分裂の過程を順不同に示したものである。これについて下の各問 ** 22+X 22+Y DNAを複製する。 相同染色体が対合する。 b. 対合した相同染色体が赤道面に並ぶ。 d. 染色体が接着面で分離し、両極に移動する。 相同染色体が対面で分離して両極に移動する。 一般的な減数分裂では、acはどのような順序で起こるか。間にみられるもの 先にして並べ替えよ。 (2) のうち. 数分裂第一分裂中期および 減数分裂第二分裂後期でみられる ものはどれか。 記号で答えよ。 (3) aeのうち、 体細胞分裂でも観察できる現象をすべて選べ。 「2n8の生物がつくる生殖細胞には、乗換えが起こらなかった場合、同通りの染色体 の組み合わせが考えられるか。 * 遺伝子型が Aal の個体が形成する配偶子の遺伝子の組み合わせとその分離比を下 の(1)~(4)の場合についてそれぞれ求めよ。 (1) A()とB(b)がそれぞれ別々の染色体にある場合。 (2) AB. とbが連鎖し、組換えが起こらない場合。 (3) Aとb.とBが連鎖し、 組換えが起こらない場合。 (4) AとB.とbが連鎖し、組換えが20%の場合。 Answer 31突然変異 (2) 3型 (SNP スニップ) 日本 (2) 女性…XX (322+X 精子・カX. 2+Yld XY b2d (32516通り BIA AbuBab-1:1:1:1 (2)AB:ab 1:1 3 Ab: B-1:1 (4)AB: Ab: aBab 4:1:1:4

回答募集中 回答数: 0