学年

質問の種類

物理 高校生

わかりません!! (3)の問題の変位が245mにならないのはなぜでしょうか?y=0を240mにしているからというのはわかるのですがなかなか納得できません

TU 例題1-12 鉛直投射・斜方投射 IIIII 10m/sの一定速度で上昇中の気球から、 2つの小石 A, B を同時に投 げ出した。気球に対する速さはいずれも16m/sであるが, 気球から見て Aは上方に,Bは水平に飛び出していった。 そして10秒後に A は地面に 落下した。 重力加速度の大きさを10m/s' とし,空気の抵抗は無視できる ものとする。 (1) 小石を投げ出したとき, 気球の地面からの高さは何mであったか。 (2) 小石B は地面から何mの高さまで達するか。 (3) 小石B の落下点は小石Aの落下点から何m離れているか。 解答) 地面に対しては,Aは初速26m/sの投げ上げ となり,またBは水平成分 16m/s,鉛直成分 10m/sの斜方投射となる。 26 () 10 (1)高さをんとし、y軸の原点を投げ出した点 にとると、地面の座標はーんとなり, Aにつ いて投げ上げの式をつくると y=( iA B 16 -h=26x10+ x(-10) x 102 .. h = 240 [m] (2) B の鉛直方向の運動に注目する。 最高点で y=h y = 0 となることより 02-102=2×(-10)y よって求める高さは y=5 h+y=245〔m〕 (3) B が地面に落下するまでの時間をとする。 (2) まず鉛直方向について -240=10t+=(-10)2よりt=8 (t=-6は不適) 水平方向の距離は 16×8=128 〔m〕

回答募集中 回答数: 0
物理 高校生

7、8、9の解き方を教えてください🙇‍♀️

10 ★ 基本 7 自由落下と鉛直投げ上げある高さから小球Aを自由落下させると同時に,その真 下の地面から,小球Bを速さ9.8m/sで鉛直に投げ上げると, 高さ 4.9m の位置で 両者が衝突した。鉛直上向きを正とし,重力加速度の大きさを9.8m/s2 とする。 (1)A,Bが衝突するのは,Bを投げてから何秒後か。/秒後 (2)衝突直前のA,Bのそれぞれの速度は何 m/s か。 【3) Aを落下させ始めた点の高さは何m か。 A-9.8 B A 衝突 B 9.8m/s ★★ 標準 8 気球からの投射 気球が,地上から初速度0で鉛直上向きに一定の加速度で 上昇し, 40 秒後に高さ98mに達した。 このとき,気球から小球を静かには なした。重力加速度の大きさを9.8m/s2 として,次の各問に答えよ。 0.12m/52 気球の加速度の大きさは何m/s2 か。 (2)地上から見て, 小球をはなしたときの小球の速度を求めよ。 (3)地上から見て,小球が最高点に達するのは,小球をはなしてから何秒後か。 (4)小球が地面に達するのは,小球をはなしてから何秒後か。 高さ 98m 気球 ucto 小球を 落下 ヒント (2) 地上から見ると, 小球は,そのときの気球と同じ速さで,鉛直上向きに投げ上げられた運動に見える。 ★★ 標準 思考 ⑨9 鉛直投げ上げ時刻 t=0のときに,地面から小球をある速さで鉛直上向きに投げ上げた。 小球は, 時刻 t で最高点に達した後, 時刻 t で地面に落下した。 (1)小球の地面からの高さ」と時刻tとの関係を表すグラフとして最も適当なものを1つ選べ。ま た,その理由も答えよ。 ① YA A A A A t t₁ t2 t₁ t2 2 t2 (2)地面から最高点までの高さはん 〔m]であった。月面上でこの小球を同じ速さで投げ上げた場合, 最高点の高さは何m か。ただし,月面上における重力加速度の大きさは地上の1とする。 (2) 初速と地上の重力加速度の大きさをそれぞれ記号で表し, 小球が達する最高点の高さを求める。 第1節 物体の運動 49

回答募集中 回答数: 0
数学 高校生

数2 微分 なぜ答えのようになるのかわかりません。 Bはゼロに近づくから、0になるのではないのですか?教えてくださると嬉しいです🙇

324 基本例題 202 変化率 00000 (1)地上から真上に初速度 49m/s で投げ上げられた物体のt秒後の高さんは h=49t-4.9f(m) で与えられる。この運動について次のものを求め、 し, vm/sは秒速vm を意味する。 (ア) 1秒後から2秒後までの平均の速さ (2) (0)-3 めよ。 (イ)2秒後の瞬間の速さ とき,球の体積の5秒後における変化率を求めよ。 ふたた P.314 基本事項 指針 (1)高さんは時刻tの関数と考えることができる。 h=f(t)=49t-4.9t2 とする。 (ア) 平均の速さとは,平均変化率と同じこと。(んの変化量)÷(tの変化量)を断 算。 (イ) 2秒後の瞬間の速さを求めるには, 2秒後から2+6秒後までの平均の速さ 均変化率) を求め, 60のときの極限値を求めればよい。 つまり、微分係 f' (2) が t=2における瞬間の速さである。 (2) まず, 体積Vを時刻tの関数で表す。 これをV=f(t) とすると, 5秒後の変化率 は t=5 における微分係数 f' (5) である。 重要 例足 xの多項 る。 (1) f(x) (2) f(x 指針 ( ( 解答(1 (1) (ア) (49.2-4.9・22)(49・1-4.9・12) 2-1 =34.3(m/s) tがαから6まで変化す 解答 (イ) t秒後の瞬間の速さは,んの時刻 t に対する変化率 るときの関数f(t)の平 均変化率は f(b)-f(a) 7D dh b-a である。 んをt で微分すると =49-9.8t dh dt については、下の (1)=4 dt 求める瞬間の速さは, t=2として 49-9.8・2=29.4(m/s)=p 注意 参照。 '=49-9.8t と書いてもよいが、 (2) t秒後の球の半径は (10+t) cm である。 dt t秒後の球の体積を V cm とするとV=1(10+t V を tで微分して 求める変化率は,t=5として 4л(10+5)=900π (cm³/s) と書くと関数を 微分していることが式か ら伝わる。 =n(ax+b)"'(ax+b) 変数がx,y以外の文字で表されている場合にも, 導関数は今までと同様に取り扱う。例え (1+(1) 4 d=1/2x3(10+t) 2.1=4z (10+t) { (ax+b)"} ば、関数=f(t) の導関数はf(t), dh dt' dt df(1) などで表す。また,この導関数を求め ることを、変数を明示してん を tで微分するということがある。 練習 (1) 地上から真上に初速度 29.4m/s で投げ上げられた物体のt秒後の高さんは、 で与えられる。この運動に ④20

回答募集中 回答数: 0