学年

質問の種類

数学 高校生

0が含むか否かはどういう基準ですか?

318 基本例題188 関数のグラフの概形 (2) ・・・ 対称性に注目 ①①0 関数 y=4cosx+cos 2x (-2≦x≦2π) のグラフの概形をかけ。 基本 187 指針 関数のグラフをかく問題では, 前ページの基本例題187同様 定義域, 増減と極値、凹心 と変曲点, 座標軸との共有点, 漸近線 などを調べる必要があるが,特に, 対称性に注 目すると、増減や凹凸を調べる範囲を絞ることもできる。 f(-x)= f(x) が成り立つ (偶関数) グラフは f(-x)=f(x) が成り立つ (奇関数) 解答 ① y=f(x) とすると, f(-x)=f(x) であるから, グラフはy軸 に関して対称である。 この問題の関数は偶関数であり,y'=0, y" =0の解の数がやや多くなるから、 の範囲で増減凹凸を副べて表にまとめ, 0x2におけるグラフをy軸に関して に折り返したものを利用する。 =–4sinx(cosx+1) =–4(cosx+1)(2cosx−1) 0<x<2πにおいて, y = 0 となるxの値は, sinx = 0 または y' 3" y'=-4sinx-2sin2x=-4sinx-2・2sinxcosx 2倍角の公式。 y=-4cosx-4cos2x=-4{cosx+(2cos2x-1)} 20 : cosx+1=0から x=π y" =0 となるxの値は, cosx+1=0 または2cosx-1=0から(*)の式で, CoSx+120 5 に注意。 sinx, 2cosx-1 の符号に注目。 (E よって, 0≦x≦2におけるyの増減, 凹凸は,次の表のようになる。 (*) - x= お π 3 π " 3 0 3 2 18 +1 π, ↑ π 0 20 3 -3 π *** ++ 軸対称 グラフは原点対称 |53+0 32 π 3″ : y 5 ゆえに, グラフの対称性により, 求めるグラフは右図。 +0 [参考] 上の例題の関数について, y=f(x) とすると よって, f(x) は2πを周期とする周期関数である。 C 5 ◄cos (- (数学ⅡI) 2π 7 (OR) (200 (2)y= 重要 189,190 y=-4sinx-2sin2xを 微分。 - -2π 5 ミル = COS π 3 YA 15 3 f(x+2)=f(x) この周期性に注目し,増減や凹凸を調べる区間を 0≦x≦2に絞っていく考え方でもよい。 ←数学Ⅱ 参照。 70 -3π sink Xの 練習 次の関数のグラフの概形をかけ。 ただし, (2) ではグラフの凹凸は調べなくてよい。 188 (1) y=er-¹ (-1<x<1) ex sin 3x-2 sin 2x+sinx (-75x5) [(1) 横浜国大〕 Op.325 EX161 重要 方程式 指針陰 中 1²2 解答 方程式で は成り立 よって, 8-x²MC 0<x<2. y' = √ y=2 y'=0と また、C 0≤x≤ なる。 よって [ 参考 した 練習 189

回答募集中 回答数: 0
数学 高校生

これの(3)でy'=0でないのにx=0で極値を取るってところが解説読んでも詳しくわからないです詳しい方教えてください

基本例題176 関数の極値(1)…基本 CHART)関数の極値 yの符号を調べる 増減表の作成 船>関数の極値 を求めるには,次の手順で増減表 をかいて判断する。 301 OOO0 次の関数の極値を求めよ。 ) y=(x-3)e-* (3) y=|x\Vx+3 ーズ 【類甲南大)(2)y=2cosx-cos 2x (0<x<2x) Ap.298, 299 基本事項(2, [3, 基本 175 1 定義域,微分可能性を確認する。 2 導関数yを求め,方程式ゾ=0 の実数解を求める。 aV=0となるrの値やy'が存在しないxの値の前後でyの符号の変化を調べ。 明らかな場合は省略してよい。 6章 25 増減表を作り,極値を求める。 解 答 0y=2xe-*+(x°--3)(-e-*)=-(x+1)(x-3)e-* y=0とすると x=-1, 3 g 増減表は右のようになる。 (1) 定義域は実数全体であり、 定義域全体で微分可能。 x -1 3 6 0 0 よって =3 で極大値 e 極大 極小 ノ -2e =ー1で極小値 -2e ー3 0 y 6 V3 3 x -3 -2e (2) ゾ=ー2sinx+2sin2x=-2sinx+4sinxcos x =2sinx(2cos.x-1) 0Sx<2xの範囲でゾ=0 を解くと 42倍角の公式 sin2x=2sinx cos.x sinx=0 から x=0, π, 2元, メー 5 -π 3' 3 2cosx-1=0 から π X= Iよって,増減表は次のようになる。 5 π 3 4yの符号の決め方につい ては、次ページ検討を参 π x 0 π 2元 3 照。 0 0 0 極大 3 極大 極小 y 1 3 1 -3 2 2 したがって x= 5 -πで極大値 3' 3 3 ;x=r で極小値 -3 2 (3) (x)=lx\\x+3とする flx)-f(0) -+3 と lim x-0 ) 定義域はx2-3である。 (複号同順) =0 リのとき,y=x/x+3 であるから,x>0では 3(x+2) 2/x+3 lim よ→ー3+0 よって,f(x) はx=0, x=-3で微分可能でない が、x=0 では極小となる。 x ゾ=/x+3 + 2/x+3 ゆえに,x>0では常に ゾ>0 CS CamScannerでスキャン 3 E数の値の変化、最大·最小|

回答募集中 回答数: 0