学年

質問の種類

数学 高校生

数学II、微分の問題についての質問なのですが、下の写真の赤ボールペンで線を引いたところの、f'(x)が、なぜそうすると式が成り立つのか分かりません。下のf'(x)を用いた定積分の式は、何を表しているのか教えて頂きたいです🙇‍♀️

346 重要 217 3次関数の極大値と極小値の差 0000 |関数f(x)=x6x+3ax-4の極大値と極小値の差が4となるとき、定数の 値を求めよ。 X=8で極小値をとるとすると ページの例題と同じ方針で進める。x=αで極大値 x= f(a) f(B)を実際に求めるのは面倒なので、f(α)(B)をα-Bat Bag 大値と極小値の差が4f(α)(B)=4 (B)-(+)-4αβ を利用することで, a+B, aBのみで表すことができる。 (x)=3x²-12x+3a 解答 f(x)は極大値と極小値をとるから 2次方程式(x)=0 すなわち3x12x+3a= 0 ...... ① は異なる2つの実数 解α, β (a<β) をもつ。 よって、 ①の判別式をDとすると D>0 D=(-6)~3(3a)=9(4-a)であるから4-0 4 したがって a<4...... ② f(x)のxの係数が正であるから,f(x)はx=αで極大 x=βで極小となる。 f(a)-f(B)=(a³-ß³)-6(a²-B²)+3a (a-B) =(a-B){ (a2+αB+B2)-6(a+β)+3a} =(a-B){ (a+B)-αB-6(a+β)+3a} ①で,解と係数の関係より よって a+β=4, aβ=a a-B=-2√4-a (a-B)=(a+B)2-4aβ=42-4・a=4(4-a) <Bより、α-β< 0 であるから ゆえに f(α)-f(B)=-2√4-a (42-a-6・4+3a) 今回は差を考えるので、 x <βと定める。 α B... f'(x) + 0 (x) 極大極小 0 3次関数が極値をもつとき 極大値 > 極小値 ②から 4-a>0 よって√4-a>0 =2√4-a{-2(4-α)} =4(√4-a)³ 44-a=(√4-a)² f(a)-f(B)=4であるから 4(√4-a)=4 すなわち よって (√4-a)³=1 √4-a=1 Aa=1 の両辺を2乗し ゆえに, 4-α=1から a=3 これは②を満たす。 て解く。 定積分を用いた計算方法 自 討 f(α)-f(B) の計算は,第7章で学習する積分法を利用すると, らくである。 (a)-f(8)=f(x)dx=3(x-a)(x-B)dx=3{-1/(a-B)"} ←p.377 基本例題 240 (1) NE これにα-β-2√4-a を代入して,f(a)-f(B)=4(√4-a) となる。 の公式を利用。 関数f(x)=x+ax2+bx+c がx=αで極大値, x=βで極小値をとるとき, 17 f(a)-f(B)=1/2(B-a)となることを示せ。 [類 名古屋大]

未解決 回答数: 1
数学 高校生

この問題の(3)についての質問です。 f(x)とg(x)のグラフの上下判定をどうやってしているのかがわかりません。 また、どちらも3次式なのに、(3)では1/6公式を使っています。なぜ使えたのか、どうやって使えるものと使えないものを見分けるのか教えてください。 よろしくお願... 続きを読む

正の実数を実数とする。 f(x)=x-3x2 とし, 曲線 y=f(x) を C1, 曲線 y= fx-p+g を C とする。 C2 が点(1, 2) を通るとき, 以下の問に答えよ。 (1) gを用いて表せ。 (2) 2曲線C1, C, が異なる2点で交わることを示せ。 (3)2曲線C1, C, で囲まれた部分の面積をSとする。 S=8 となるとき のかの値を求めよ。 (1)C2は y=f(x-p)+q =(x-p)² - 3(x-p³ + q (3) fx-8(火)=3p(4-1)3xx-(p+0} で、P>0であるから、1<x<P+1のとき、 fw<g(x) fw-g(x) <0 つまり これが点(1-2)を通るとき であるから, -2 = (1-p)² - 3 (1-p)² + 2 よって、8=p-3P (日) (2) (1)より、C2は y=(x-p3-3(x-p5+p-sp ··· Y = x²= (³p + 3) x² + (3p²+ 6p) x − 3p²¬³p ここでg(x)=ペー(3p+3)+(346) X-3-3P とおくと、 fw-g(x) = 3px=(3+6P)x+3p+3P = 3p {ー(p+2)x+(+1} 3P(x-1){x(p+1)} より、f(x)=g()をみたすxは x=1, p+1 ここでP>0より P+1>1であるから、 2曲線CC2はx座標が1, 1.pt1の異なる2点 で交わる。 P+1 S = {gw-fox) | dhe = P+1 -3p) (x-1) 10-(p+1)} obc -3p (-1) + (PH-1) ³² p 2 よってS=8のとき =8 4 18 :pa16 Proより、p=2

解決済み 回答数: 2