学年

質問の種類

物理 大学生・専門学校生・社会人

この量子力学の一次元ポテンシャル問題が分かりません.可能であれば解説をしていただきたいです.初心者なので丁寧に教えて下さい!

3.w(x)を実関数として以下の形に書くことができるポテンシャルに対する質量mの粒子 の1次元ポテンシャル問題を考える. =2727 V(x) = 2m ·(w¹²(x) — w'(x)). (3.1) ここで,'はxによる微分を表す。例として,w(x)=(mw/2h)x2のときにV(x)はよく知られ た角振動数の調和振動子のポテンシャルから定数を引いたものになる. (a)を運動量演算子,父を位置演算子として、この系のハミルトン演算子は,一般にある 適切な実関数f(x)を用いて 1 2m =(i+if(x))(i-if(x)) (3.2) という形に書くことができる. f(x) を具体的に求めることでこのことを示せ.このこと から,この系のエネルギー固有値 En (n=0,1,...)は非負であることがわかる. 以下では, EoE1E2.・・とする. (b) エネルギー固有値E。=0の束縛状態が存在する場合を考える.この基底状態の波動関数 (x)を求めよ. ただし, 規格化定数は問わない. (c) ポテンシャルV(x)が V(x)= == 2 2 h² + = 1 ;(tanh?(x/a). ma² cosh2(x/a) 2ma² 2ma2 cosh² (x/a)) (3.3) (aは定数) のとき,対応するw(x) を求めよ. また, その結果を利用して、ポテンシャル が 2 U(x) = - ma²cosh2(x/a) (3.4) で与えられるときに基底状態のエネルギー固有値と波動関数を求めよ. ただし, 規格化 定数は問わない. (d) (3.1) 「対」になるポテンシャル V(x) = h² (w12 (x) + w" (x)) (3.5) を考える.この「対」になる系の束縛状態のエネルギースペクトルÉmはÉm=E(=0) となるものが存在しないことを除いて束縛状態のEnと一致する,すなわち,Ēo = E1 E1 = E2, ... となることを示せ. (e) ポテンシャル(3.3)と 「対」になるポテンシャルV (x) を求め, (4) の結果を利用すること で、ポテンシャルが (3.4)で与えられるときの束縛状態の個数を求めよ.

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

どなたかわかる方おられませんかね。

2. 電子の内部状態を考察するため、 次の交換関係を満たすエルミート演算子 S1, S2 S3 を考える: [SS2]=iS3 [S2,Sa]=iS1 [S3.Si]=iS2. (1) S2 = S} + S2 + S7は任意のSi (i=1,2,3) と可換であることを示せ。 (2) St:= S1 ±iS2(複合同順) とおくとき、 次の交換関係を示せ: [S3, St] = ±S土 [S+,S_] = 2.S3. (3) |+) を Ss+) = -+), S+|+) = 0 を満たす S3 の固有状態とする。 この状態 (+) は の固有状態 となることを示しその固有値を求めよ。 (4) |-> を |-) := S_+〉 で定義する。 この状態 |-> は S3との同時固有状態となることを示しそれ らの固有値を求めよ。 またS_|-> = 0 を証明せよ。 (5)以上のような演算子と状態の組が2種類あるような合成系を考える: {${",|a}(1)}== }i=1,2,3,a=11 {S(2),\3)(2)}i=1.2.3.83=±ただし、S^^) と S(2) は全て可換であるとする。この合成系における任意 の状態は、(a) (1) (3) (2) (0, 3=±) の4種類の基底ベクトルで表され、 合成されたスピン演算子 SiS(1) + S(2) (i=1,2,3) はこの合成系の状態に Sila)(1)(3)(2) = (${1/(a)(1)(3)(2) +a)(1)(S{(2)(3) (2)) のように作用する。 この合成系における S3, 32 の同時固有状態を上記の4種類の基底ベクトルの 線型結合で表し、それぞれの固有値を求めよ。 ただし規格化は行わなくてもよい。

回答募集中 回答数: 0
物理 高校生

これ基底状態から第一励起状態になるときk格からL格に電子が1つ移ることで電子同士の斥力でなんかすごいことになったりしないんですか?

594. フランク・ヘルツの実験 解答 (1) 解説を参照 (2) 2.5 指針 加速された電子の運動エネルギーが, 水銀原子の基底状態と, 最もエネルギーの低い励起状態とのエネルギー差に等しくなるとき, 原 子内の電子を励起し、エネルギーを失う。 エネルギー差に等しくないと きは、原子内の電子を励起できず, エネルギーを失わない。 解説 (1) FG間の電位差で加速された電子は,その運動エネル ギーが小さいとき, 水銀原子に衝突しても, 原子内の電子を励起でき ないので,途中でエネルギーを失うことなくPに達する。 しかし, 加 速した電子のエネルギーが, 水銀原子の基底状態と, 最もエネルギー の低い励起状態とのエネルギー差に等しくなると,電子は,水銀原子 内の電子を励起し, エネルギーを失う。 このため,電子は, Gよりも わずかに電位の低いPに到達できなくなり、 電流計に流れる電流が減 少する。 さらに電位差Vを大きくすると,やがて電子のエネルギーは, 2回目の励起によって失われ、 再び電流が減少する。 このようにして, 電流は,増加・減少を繰り返す (図)。 (2) 電位差Vが4.9V 大きくなるたびに、電流は減少を繰り返すため. 水銀原子のエネルギー準位の差は 4.9eV である。 また, 観測される紫 外線は, 励起された水銀原子内の電子が基底状態にもどるときに放出 される光子であり, 4.9eVのエネルギーをもつ。 プランク定数をん, 電気素量をe, 光速を c, 紫外線の波長を入とする と. eV= 入について整理し, 各数値を代入すると, i= hc eV = hc 入 ( 6.6×10-34) × ( 3.0×10) (1.6×10-19)×4.9 = 2.52×10-7m 2.5×10-7m 理 C

回答募集中 回答数: 0
生物 高校生

生物 下の写真が問題です。 問題用紙に書き込みがあり文字打ちとグラフ作成等を自分でしてしまったので少し見づらいかもしれません。すみません 【問】 この実験結果によって, マウス小腸上皮細胞におけるグルコース輸送に必要であることが示されたタンパク質a〜cのうち、粘膜側、基... 続きを読む

細胞膜での物質の輸送にかかわるタンパク質には、ポンプ, チャネル, 輸送体などがある。 このうち輸送体は目的物質の濃度勾配に したがった輸送を行うが、 中には特定のイオンの濃度差を利用してイオンと目的物質を同時に輸送することで二次的な能動輸送を 行うものもある。 後者のような輸送体は共役輸送体とよばれる。 消化管内のグルコースは、小腸の上皮細胞の粘膜側の輸送体により細胞内に取りこまれ,次いで基底膜側の輸送体によって基底膜側の 細胞外へ放出される。 マウスの小腸におけるグルコースの輸送のしくみを調べるため、以下のような実験を行った。 【実験】 マウスの小腸を取り出し, 約 4cmの長さに切断した。 傷つけないように注意しながら腸を裏返し, 粘膜側が外側, 腸の外側だった側が 内側になるようにした。 一方の端を糸でしばった後, 内部に10ミリ mol/Lのグルコースを含むリンガー液 (内部液とする) を満たし, もう一方の端も糸でしばった。 これを10ミリ mol/Lのグルコースを含むリンガー液 (外部液とする) 中におき, 容器をゆっくり揺ら し、かつエアポンプで空気を与えながら37°Cで90分間培養した。 小腸上皮細胞の基底膜側から放出されたグルコースは、その下の 結合組織を通り抜けて内部液に放出される。 実験には2種類のリンガー液A,Bを用いた。 (【成分】参照) リンガー液Bはグルコースの輸送に影響を与えない他の物質で浸透圧がリンガー液Aと同一になるように補ってある。 【表】のよ うに外部液と内部液に用いる液を変えた四つの実験を行い, 培養後に外部液と内部液を回収してグルコース濃度を測定したところ 【結果】 のような結果になった。 なお,試薬Uはナトリウムポンプの阻害剤である。

回答募集中 回答数: 0