学年

質問の種類

物理 大学生・専門学校生・社会人

1番、3番の前半、4、5が分かりません。 自分で調べながらやっているつもりなのですが、式の関係性などが全然掴めず、解けません。過程と共に教えて欲しいです。

確認問題 #01 ドブロイ波長 1.ド・ブロイ波長は、運動量p=mv の物質が持つ波 (物質波) の波長であり、 入=h/p=h/mv と表される。ここで、 hはプランク定数、mは質量、 v は速度である。従って、運動エネル ギーEの粒子についてのド・ブロイ波長はと表される。 電子について、波長入を À 単位、 運動エネルギーをV単位で表すとき、 [Å] 150.4 == と書けることを示しなさい。 プランク [E[ev] 定数は6.626×10-34 [Js]、 電子の質量は9.109 ×10-31 [kg] 1 [eV] = 1.602 × 10-19 [J]、1[Å] = 1 × 10-10 [m] とする。 2. 運動エネルギーが50eV の電子のド・ブロイ波長を求めなさい。 3. 光の粒子性を表す光量子仮説での式により、光子エネルギーE=hv と光の波長 入の関係式 がE [eV] = 1240/2 [nm] と書けることを示しなさい。 また、波長が400nmの光について 光子エネルギーをV単位で求めなさい。 4. Ni 単結晶表面での最近接原子間距離は 0.249mm である。 電子のエネルギーが100eV の とき、n (回折の次数) がいくつまでの回折スポットが出現するか述べなさい。 また、 それ ぞれの回折角度を求めなさい。 同様に、電子のエネルギーが150eVのとき、 nがいくつま での回折スポットが出現するかと、それぞれの回折角度を求めなさい。 be 101 be 入 02 d d sine₁ =λ d sin0222 5. 運動エネルギーが100eV の電子をある金属の結晶表面に対して垂直に照射したとき、 表 面の法線方向から 25.2° と 58.3° の方向に回折スポットが観測された。 これらが、 1次お よび2次の回折スポットに対応する場合、この金属の原子間距離を A単位で求めなさい。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

量子力学の教科書で「非相対論的な計算では付加定数を適当に取るのでε=hνから求めたνの値にはあまり意味がない」とはどう言う意味ですか? この教科書ではεをエネルギー、hをプランク定数、νを振動数としています。

12 p=√2meV となり (1) の第2式から陰極線の波 長入は 1 量子力学の誕生 h h Þ √2me V と計算されることがわかる. me に数値を代入すれば, i= 入= 150 A (1Å=10-10m) V 14 1-8図 Si 単結晶 (111) 表面の低速電子 線回折写真(入射エネルギー 43eV) ( 村田好正氏 (東京大学名誉教授) によ る) となる. V~100Vの程度では陰極線 の波長は1Åの程度になる. この程度の波長の彼ならば, X線と 同様に, 結晶内に規則正しく並んだ原 子によって回折現象を起こすはずである. 事実 , アメリカのデヴィッスンと ガーマーはニッケルの単結晶で電子線を反射させ,X線のときと同様な干渉 図形を得た (1927年). また, わが国の菊池正士は薄い雲母膜で, イギリスの トムソンは薄い金属膜で,電子線の回折像を得て,ド・ブロイの予言の正し いことを実験的に立証した. ド・ブロイの原論文では,相対論的考察が用いられているが,p=h/入は 以下の非相対論的な議論でもそのまま使われるエネルギーの方は,普通の 非相対論的な計算では付加定数を適当にとるので,ε= hv から求めたの値 そのものにはあまり意味がない. しかし、 実際に測定値と比較されるのはい つもショー vmという差の形になるので、不定の付加定数を気にする必要はない. §1.4 波動力学の形成 よく知られているように張られた弦や膜とか管内の空気の振動のように 有限の範囲内に局在する波は定常波 (固有振動) をつくり, そのときの振動 数 5

回答募集中 回答数: 0
数学 中学生

この問題の(3)の解き方を教えて欲しいです!!

SA S 第五問 次の 1,2の問いに答えなさい。 1 図Iのような 25mプールがあり, 孝介さんと翔太さんが,それぞ図I れP地点, Q地点から同時にスタートしました。 孝介さんは、最初の 20 秒間は毎秒1/12mの速さ,その後は、毎秒 3 -m の速さでR地点まで泳ぎました。さらに, R地点に着くとすぐ に折り返し、 毎秒 mの速さで25m泳いでP地点にもどりまし 5 12 た。 翔太さんは、毎秒 mの速さで, S地点, Q地点で折り返しなが ら5分間泳ぎました。 図IIは, スタートしてからx秒後の, スタート地点からそれぞれ の位置までの距離をyとして, x, y の関係を、 途中までグラフに表 したものです。 次の (1)~(3)の問いに答えなさい。 (1) 孝介さんが, R地点で折り返したときからP地点にもどった ときまでの,x,yの関係を図ⅡIのグラフに表しなさい。 図Ⅱ ★★ 25 20 15 10 2 翔羽ャッ 5 y (m) (3) 2人が最初にすれちがったのは, スタートしてから何秒後か, 求めなさい。 孝介 0 20 40 60- te 翔太さんは, スタートしてから5分間で, 全部で何回折り返したか, 求めなさい。 S 10 15 20m 80 バスダス ☆★☆☆☆☆ 20 翔太 100 120 140 ・x(秒) 95 2 秒後 2 下の図のように、 四角形ABCD は AD//BCの台形で, △BCD は ∠BCD=90°の直角二等辺三角形です。 台形 しの CからBDにひいた垂線とBDと

回答募集中 回答数: 0
物理 高校生

なんでこれ強め合うんですか?明るい、暗いの条件、言われてないんですけど

る。 少の薄 RU 真 どのよ 943 ラス 目の可視 94 光 装置で、光源から波長の光を入射させて実験をし 299 ヤングの実験 右図のようなヤングの実験の 点を原点O, スクリーンと複スリットの距離をL た。 S, S, がら等距離の位置にあるスクリーン上の (1) 屈折率n, 厚さの物質Aをスリット S, の前に置いた。 このとき, 光は物質に対 してほぼ垂直に物質を横切るものとして, 単スリットと複スリットの間で生じる光路 = dはLに比べて十分小さいものとする。 差を求めよ。 (1)で、もともと原点Oにあった縞模様はどちらにいくら移動したか。 (3)物質Aを取り除き,スリット So を図の矢印の向き(下向き)にゆっくりと動かした。 物質を取り除いた後,干渉縞の明暗が初めて反転したときのS,S,-S,S2 はいくらか。 5番目と だけずれ | Step ただし、 94 3 解答編 p.163~166 (1) id, 0, を用いて表せ。 次に、図2のように波長がわずかに異なる。 波長の光を当てると, その1次の回折光を同じ 源 201 300 回折格子 格子定数d の回折格子に,波長入の単色 光を当ててスクリーンに向かわせると,図1のようにスク リーン上で明点が観察された。 図2のように、回折格子に 入射する光の進行方向と回折格子に立てた法線とのなす角 回折光と回折格子に立てた法線のなす角をβとする。 ここでは,α<βの場合を考え, 反射面に入射した光は, 反射面を中心とした素元波を発生させて、 様々な向きに広 がって進んでいくと考えてよいものとする。 (1) 経路 AD, BC をそれぞれ求めよ。 (2) 隣り合う回折光が強め合うときの条件式を書け。 図2 (3) 入射角α = α′で入射し、同じ角度で反射した光 (0次) に対して,最も近い明線の回折光 (1次) がβ=β' を満たすとき,角α'と'の間に成り 立つ式を求めよ。 の方向で観測するためには,回折格子をゆだ け傾ける必要があった。 (2) 経路の差P'A+ AQ' をd, p, 0, を用いて表 せ。 (3) - d, 0, を用いて表せ。 ただし, in cosp=1 と近似せよ。 である。 1 A 入射光 d S 回折格子 6801 回折格子図1は、格子定数dの回折格子に垂直に波長入の光を当て,入射光と の角をなす方向で干渉が起こることを説明した図である。このとき, 1次の回折光は 0 = 0, の方向で干渉を起こした。 PLA A 10 1 図1 図1 スクリーン 回折光 C D B 101 図2 (2) ASP'=, ∠ASQ'=0,-p 基礎 物理 23 その回折と干渉 185

回答募集中 回答数: 0
物理 高校生

問9で、sinθ=√3/4なのは何故ですか?

例題 2 屈折波の波面 図のように,平面波が境界面に達した。 屈折 波の波面を作図せよ。 ただし, 媒質 I に対す る媒質ⅡIの屈折率を2 とする。 2 (+式 (9)) から, 01=n12=2 V₂² V₁ T 境界面 -= 1212 V₁ 指針 屈折の法則 -=n1z(p.152・式(9))から, 媒質ⅡIにおける波の速さが,媒質 V2 Iにおける速さの何倍になるかを求める。 ホイヘンスの原理にもとづいて素元波を描 き, 屈折波の波面を作図する。 解 媒質 I, I における波の速さをそれぞれ v1, v2 とすると, ma 逆の屈折る V₁ V2 V2 であり、媒質 Ⅱ における波の速さは, 媒質 Ⅰ における速さの1/12/2になる。図のように,B2 からAB におろした垂線とA,B との交点 B2C の素元波 (半 をCとして, B, から半径 円) を描く。 このとき, B2 からこの素元波に 2 引いた接線が, B2 を通る屈折波の波面となる。他の波面は,入射波の波面と境界面の『 交点から,この接線に平行な線を引くことで求められる。 B1 B2C 2 B2 入射波 の波面 媒質 Ⅰ A2 媒質 ⅡI] 屈折波 の波面 入射波 の波面 媒質 Ⅰ 媒質 Ⅱ 問9 類題例題2で,入射波の波面と境界面のなす角を60° とする。このときの屈折角 を0として,sin0 の値を求めよ。答えは分数のままでよく, ルートをつけたままでよい。 8 平面波 障害物に を送ると, にまわりこ 回折は, 部分にも すき間 (a))。 した る (図 波長よ の

回答募集中 回答数: 0