学年

質問の種類

数学 高校生

一枚目の画像の(2)より、掛け算の前後を変えてしまったため私の解答だと-∞という答えがでます。 しかし、解答だと∞と出されています。 この場合、-∞でも正解にはなりますか?

200 基本例題 116 無限級数の収束、発散 次の無限級数の収束 発散について調べ, 収束すればその和を求めよ。 1 1 (2) √1+√3 √3+√5 ∞ (1) Σ 1 n=1 (2n+1)(2n+3) Sn= 1 基本事項 指針▷ 無限級数の収束、発散 は 部分和 S, の収束,発散を調べることが基本。 Zan が発散⇔ {S} が発散 8 Zanが収束⇔ が収束 {Sn} n=1 解答 第n項 an までの部分和をSとする。 1 (1) an= □ よって amilTun |_n=1 (1) 各項の分子は一定で, 分母は積の形→各項を差の形に変形(部分分数分解)する ことで,部分和 Sn を求められる。 (2) 各項は √√n+√√n+2 CHART 無限級数の収束 発散 まずは部分和S” の収束・発散を調べる /1 1 = = 1/² ( ²3² - 27²+3) 2 であるから = 12 (分数式) のときは, 部分 (2n+1)(2n+3) 22n+1 2n+3 ) であるから 分数分解によって部分和を 1/11(1/1/8-1)+(-1)+(277-273) 求めることが有効。 なお, α=bのとき lim S=1/12/11/13-0)=1/10 n→∞ + LATRONE の形→ 分母の有理化によって各項を差の形に変形する。 よって ゆえに,この無限級数は収束して、その和は1/3である。 √n+2=√n (2) an= √n+√n+2 (n+2)-n 1 √2+√4 limSn=∞ 2n = 1 Sn={(√3-√ī) + (√4-√2 ) +….... n→∞0 ゆえに、この無限級数は発散する。 = 1/2 (√2+1+√n +2 -1 -√2) 1 // (√n+ 2 = √n) 2 2 麦わらないと+ (n+1-√n-1)+(√n+2-\)} + 1 (n+a)(n+b) = ·+... 1 ( b-a\n+a n+b 12400 1 分母・分子に 1lim√n+1=∞, n +2√を掛ける。 消し合う項・残る項に注意。

回答募集中 回答数: 0
数学 高校生

x²+y²の値の求め方教えていただきたいです🙇🏻‍♀️ (マーカーで囲ってあるところからよく分かりません😭)

成績上位者の定番テクニック 成績 解き方 ワザあり 解き方 すぐに値を代入しない。 値を求める式を変形してから代入する。 問題を解いて確認! V5-2 リ= V5+2 V5+2 のときのr+y, xyの値を求めよう。さらに,これらを利用して, ?+u?a V5-2' 値も求めてみよう。 問題 直接代入して,x+y, xyの値を求める方法 x+y, yに, xとyの値を代入して, V5-2 分母をそろえるために, 分母と分子に 同じ数を掛けて通分しよう。 (¥5+2)(/5+2) , (V5-2)( (V5-2)(75+2)' (V5+2) (75 V13+ 5+2+ V5-2 x+y= 13+ V5+2 V13 の 三 (V5+2)(V5-2) (V5-2)(V5 +2) (V5)+2×V5x2+2°+(/5)-2×V5×2+2° V 【展開の公式) 分子は,(a+b)。-α+2ab+b° だから (V5)-22 5+4V5+4+5-4V5+4 (a-b)?=a"-2ab+6 はさま (答) 分母は,(a+b)(a-b)=a"-b° を利用する。 >『?」なら、p.40 をチェック! -=18 5-4 5+2 5-2 5-2 (答) と表す =1 5+2 分母を有理化したx, yの値をx+y, xyに代入する方法 まず,r, yの分母を有理化すると, V5+2_(V5+2)(/5+2) V5 -2 (V5-2)(/5 +2) TY= そこて 【分母の有理化) 分母と分子にV5+2を掛ける。 >「?』なら, p.47 をチェック! べると X= 3 (/5)?+2×V5 ×2+2°_5+4V5+4 =9+4、5 ここで (V5)?-2? V5-2_(/5-2)(V5-2) V5+2(V5+2)(V5-2) 5-4 【分母の有理化) 分母と分子にV5-2を掛ける。 1?』なら, p.47をチェック! リ= これ』 (V5)-2×V5 ×2+2°_5-4/5+4 (V5)2-2? 今,三 -9-4-5 5-4 ★の名 これらの値を代入して, x+y=9+4V5 +9-4/5=18 y=(9+4V5)(9-4V5)%3D9"-(45)?=81-80=D1 次に,+y°の値を求める。 値を求めたい式はエ+y,利用できるのは, x+y, yだから これらを含む式を考えると, (r+y)。%3Dr、+2xy+y° (答) (答) だか また。 7ザあり!Q と表 これを, △ そのまま代入すると ポ+ザ=(x+y)-2ry と変形して,先に求めたx+yとyの値を代入する。← +yy=(r+y)?-2ry V5+2 V5-2 ()( これ V5-2 V5+2 となり、計算ミスをしやすい。 = 182-2×1=324-2=322 先に求めたr+y=18, y=1を代べ る。 差がつく 知っ得 がつくさ計称式 例題で扱ったx+は, xとりを入れ替えるとy°+x° となり、もとの式と同じ。 このような式を、x、 知っ得 「対称式」というよ。この「対称式」には、x+y とxy (これを 「基本対称式」 という)を用いて表せるという性質 る。例題は, この性質を使って解いたよ。 とは? yについての

回答募集中 回答数: 0
数学 高校生

余弦定理を使うのは△ABDじゃなくてもいいんですか?最後に計算するのは、△ABDじゃないところでもいいんでしょうか。

正弦·余弦定理の利用(空間) 測量への応用 (4) 基礎例題138 ikm 離れた海上の2地点 A, Bから,同じ 山頂Cを見たところ,Aの東の方向,見上げ た角が30°, Bの北東の方向,見上げた角が 45°の位置に見えた。この山の高さ CD を求 めよ。ただし,地点DはCの真下にあり, 3点 A. B, D は同じ水平面上にあるものとする。また,/6 =2.45 とする。 基礎例題133 O0 C A )30° 45° D 1km」 B CHARI QGUIDE) 測量の問題 図をかいて,線分や角を三角形の辺や角としてとらえる 1 CD=hkm として,AD, BD をんで表す。 2 ZADB の大きさを求める。…「Aの東,Bの北東の方向に山頂Cが見えた」 という条件に注目。 3 AABD に注目して余弦定理を利用し,んを求める。 +00 日解答田 山の高さ CD をh km とする。 C AACD は, 30°, 60°, 90° の直角 いて、 斜 しいこ M-CD: AC: AD hkm AD=/3h A また,ABCD は, 45°, 45°, 90° 三角形であるから =1:2:/3 30°¥3h 45° e -BD:CD: BC D 1km 145° の直角二等辺三角形であるから B BD=h 次に,地点Dは,Aの東の方向かつBの北東の方向にあるから ZADB=45° AABD において,余弦定理により 1°=(/3h)°+hー2./3h-hcos45° 1(2 V2 -Cos 45°= 2 すなわち 1=3h°+h°-V6 h? 4+/6 (4-/6)が=1 UA1a よって 4+2.45 hー1 4-V6 ゆえに 一分母の有理化。 16-6 分母·分子に4+6を 一計算は電卓による 圏 約 803 m =0.645 掛ける。 48AA h>0 であるから h=\0.645 =0.8031… P 右の国の

回答募集中 回答数: 0
数学 高校生

穴埋めの部分が分かりません 教えて下さい!

ーシックレベル数学IA テキスト 第3話 実数·絶対値1次不等式 第3講 高1- 高2 ベーシックレベル数学1A テキスト 第3 S1 > 実数 1) 次の分数を循現小数の表し方で書け。 (2) 循環小数0.2を分数で表せ。 1 要点整理と公式 (3) 次の値を求めよ。 (要点1実数 「有理数」 …… 2つの整数 m, nを用いて (m) 2-21 m の形で表される数(ただしn+0)。 n 3 (ex) Point Pickup 2= -0.3= 分数を循環小数で表す 「有限小数」 … 小数第何位かで終わる小数。 3 = 0.75 4 「無限小数」…… 小数部分が無限に続く小数。 (ex) (分子)-(分母)を実際に計算し、繰り返される部分を見つける。 (ex) =0.333……。 3 =0.108108……。 37 4 循環小数を分数で表す T=3.1415…… 無限小数の中で,ある所から同じ数字の並びが繰り返される小数を「 」という。 0 求めたい循環小数をxとおく。 循環小数は次のように書き表すことができる。 の 循環している部分が口桁 = 10°xを考える。 0.333………=0.3. 0.108108………=0.108 3 100xーxを計算し, xを求める。 0.518を分数で表す。 有理数は,整数, 有限小数, 循環小数のいずれかである。 x=0.518とおく。循環している部分が 桁なので、10 x= xを考える。 また、循環しない無限小数を「無理数」 という。 整数(自然数,0, 負の整数) 有限小数 循環小数 有理数と無理数を合わせて 有理数 実数 無限小数 」 という。 無理数(循環しない無限小数) 要点2 絶対値 絶対値 J。 数直線上で、原点(数0を表す点) から実数aまでの 「 と表す。 「絶対値」… a20 のとき |a|=a a<0 のとき |a| =-a 1-21 12| aの絶対値を 2 (ex) 2の絶対値は 1 -2 -1 0 -2の絶対値は 10|=0 である。また. |a|20である。 46 CAECRUIT HOLDINGS 本サービスに関する的財定権その他一切の権利は著作権者に帰属します。 また本サービスに掲載の全部または一部につき新複製-転載を禁止します。 - 44 - AECRUIT HOLDINGS 一サービスに開する知的財権その他一切の権利は著作権者に帰属します。 た本サービスに細能の全部または一部につき無断権転載を禁止します。

回答募集中 回答数: 0
数学 高校生

(3)の意味がよくわからなくて、なんで7になるのか? というのと ⑦が成り立つのがなんでこの不等式になるのか? 分からないので教えてください!!! よろしくお願いしますm(_ _)m

以 「数字B2国語 ※Z会の映像「共通テスト対策映像授業」 は, 共通テスト攻略演習とは別料金となります(別 冷お申し込aみが必要です) 一分条 第1問 アMEGA1-21H1-01 解説 2ニェいa+ (2) - 号のとき、6は (1) a=2- 5 より ats ん1 で。。 2+ 5 (2- V5)(2 + 5) -Sェs号 であるから、(かつ6 より 2-5 = -2- V5 イ分母の有理化。 (6 こ (6 = (2- 5) + (12- V5) = -2、5 g+ 4左のような数直線をかいて考ち えるとわかりやすい。 -号SェS4 よって、二つの不等式の, ② をともに満たす整数xは 4 となる。ここで エ=-1, 0, 1, 2, 3, 4 であるから 4<5<9 の6個ある。次に,③ または6'より (子++) -\+0 そして、2<5<3より -1<α<0となるので J- 6a +9=Ca-3)? %= la-3|=3-a -3SIS -2=(-25)?-2=18 l=2-5 tっ 2<15c32cらく3 号+-+ P= よって、二つの不等式①, ② の少なくとも一方を満たす整数 ェ は エ=-3, -2, -1, 0, 1, …, 8 の12 個ある。 (3) 題意を満たすのは, 二つの実数の部分集合 A= {z|-3<xハ4}, 4a<3より。 43を満たす整数 x は8個。 6Yを満たす整数ェは 10 個 であるから,前半の結果と合 わせて、求める個数を 8+10-6= 12(個) と計算してもよい。 ル-2 -2 -0 来せ Ila|-3|=|-a-3|=|a+3|=a+3 . Ja?- 6a +9+|lal-3|= (3-a)+(α+3) =6 Aa> -3 より。 -2-3--7 a+2 (2) X=a+1, Y=a-5とおくと X=3-J5, Y=-3-5 -lcdco.について B イ与式は a+1, a-5の対称式 なので、これらの基本対称式 で表せる。ここでは,考えや すいように X, Y と置き換 A ACBかつ AキB …………の) +2-3 3 となるので ;a+6 A= B のときは、D は2を満たす ための必要十分条件となるの で、不適であることに注意し のときである。 X+Y=-2,5 えた。 ここで,a>0より,a+6>4はつねに成り立つから,① が成り XY = (-J5+3)(-、5-3)= -4 AX, Y の基本対称式 X+Y, XY で表すことを見越して, あらかじめ計算しておく。 立つのは よう。 したがって a+2 -25-3 . a27 できなかったらココを復習!) イX, Y の対称式を基本対称式 X+Y, XY で表す。 必要条件と十分条件 (「考え 方2」参照) = X2+ XY + y2= (X+Y)? - XY のときである。これが,求める aの値の範囲である。 = (-25)?- (-4) = 24 考え方 1補足絶対値や根号をはずす 一般に,実数aに対して (1) 不等式のを解くと 3 -3SrA4 (絶対値の中身2x-2 の正負 で場合を分ける。 また,不等式 2は, ェZ1のとき 2ェ-2Sr+a+4 であるから, a>0より1<a+6と合わせて = lal である。a= -3 の場合などを考えてみるとわかりやすいだろう。また, 実数aに対して, その絶 対値|a| は Sa+6 の [a (az0のとき) 1SxKa+6 la|= -a (a<0のとき) である。絶対値の中身の正負によって場合を分けて考える必要がある。 絶対値の中に絶対値が入っていても同じように考えればよい。たとえば ||ェ-al (a20のとき) ||z+al (a<0のとき) 一方, エ<1のとき ー(2r -2) <x+a+4 2-4+2 Aa>0より であるから, a>0より - く1と合わせて |ェ-|a|| = { -2<-番く! -425IS1 であり、a20のとき よって, ③, ⑤ より, 不等式 ② を解くと ei-T1-09

回答募集中 回答数: 0