学年

質問の種類

数学 中学生

(2)について質問です。なぜ直径(b+0.4)になるんですか。同じく第4レーンの説明もなぜ(b+6.4)になるんですか。

解けたら メル挑戦争 説明 PA 難易度 txitx ★ レベル★★ 考えてみよう 下の図のように,大きさのちがう半円と, 同じ長さの直線を組み合わせて陸上競技用 のトラックを作った。 半部分 直線部分 幅1m 半円部分 カレンダー いろいろな am bm 第1レーンの 走者が走る距離 右の図は さんは、 1+84 のよう さん 3の倍 第4レーンの 走者が走る距離 第1レーン 第4レーン もっと 部分の長さはem 最も小さい半円の直 径は6m, 各レーンの幅は1mである。 また, 最も内側を第1レーン, 最も外側を第4レー ンとする。 ラインの幅は考えず、円周率を とすると次の問いに答えなさい。 きょり (第1レーンの内側のライン1の距離をem とすると, f=2a+bと表される。 この αについて解きなさい。 l=2a+wb コ両辺を入れかえる まる説明 2a+b=l bを移項する 2a=l-rb 2 l-πb 両辺を2でわる a= 2 a= l-xb 2 木) (2) 図のトラックについて, すべてのレーンの ゴールラインの位置を同じにして,第1レー ンの走者が走る1周分と同じ距離を各レーン の走者が走るためには、第2レーンから第 4レーンまでのスタートラインの位置を調整 する必要がある。 第4レーンは第1レーンよ スタートラインの位置を何m前に調整す るとよいか。 求めなさい。 ただし, 走者は, 各レーンの内側のラインの20cm外側を走る ものとする。 第1レーンは, amの直線部分の長さ2つ分と、 直径(6+0.4)mの半円の弧の長さ2つ分の合計だから、 ax2+(b+0.4) × ×2 =2a+b+0.4 (m) ... ① ×12/1 第4レーンは, amの直線部分の長さ2つ分と。 直径(6+6.4)mの半円の弧の長さ2つ分の合計だから、 a x2+(b+64)xxx2 =2a+xzb+6.4x(m) ---2 ②①の分だけ、第4レーンのスタートラインを前にす ればよいから、 (2a+b+6.4x)-(2a+b+0.4x) =6r(m) 67 m

解決済み 回答数: 1
数学 中学生

(1)の答えって2枚目の写真のように表したらだめなんですか?

P.18~19 式による説明 3 余る よう 下の図のように,大きさのちがう半円と, 同じ長さの直線を組み合わせて,陸上競技用 P.20~21 等式の 完成 のトラックを作った。 カレンダーに並んだ数を いろいろな規則性がひそ 半円部分」 直線部分 幅1m 半円部分 岩手 ■ 数, 1, 5。 でわ 形で表されること am bm 第1レーンの 走者が走る距離 第4レーンの 走者が走る距離 第1レーン J 第4レーン もっと 直線部分の長さはam, 最も小さい半円の直 径は6m, 各レーンの幅は1mである。 また 最も内側を第1レーン, 最も外側を第4レー ンとする。 ラインの幅は考えず、円周率を とすると次の問いに答えなさい。 きょり (1) 第1レーンの内側のライン1周の距離をlm とすると,l=2a+b と表される。 この式を αについて解きなさい。 これかえ 右の図は、ある月のカ さんは、右の図のよう 1+8+9=18=3 × 6 のように、3つの数の 進さんは、他の部分 3の倍数になるか、 進さんの囲み ょう。(ただい (19) n 右下の この3 n+( n+5 和歌山 したか 3 の 囲み方を変 横一列 使って l=2a+b 10 両辺を入れかえる P.18~19 式による説明 2a+wb=l 箱の中 bを移項する 2a=l-rb (例 6枚入 l-rb 両辺を2でわる = とき, l-rb 数 2 a= 2 2 数こ 女数を 栃木 (2) 図のトラックについて,すべてのレーンの

解決済み 回答数: 1
地学 高校生

地学基礎です 例題2は①-②をするとマントルの体積が出るのでマントルの体積÷地球の体積(①)×100をすると割合が出てくるかなと考えたのですが合っていますか?あと、①と②の数が大きいせいか、うまく計算ができないので解き方教えてください🙇 例題3は(1)と(2)は多分できまし... 続きを読む

【例題2】 地球において地殻の厚さが無視できるほど薄いとしたとき、 マントルの体積が地球全体の体積に占める割合として最も適切なも のを、次の①~④からひとつ選び、 番号で答えなさい。 ただし地球も核も完全な球体であるとし、 地球の半径を6400km、 グー テンベルク不連続面の深さを2900km とする。 また必要に応じて、 次の値を利用してもよい。 2.92 8.4 2.9324.4 3.5212.3 3.5342.9 6.4240.9 6.43=262.1 ① 76% ② 80% ③ 84% ④ 88% ①季・6400= 640 ②チル・29003= 2900ku TC=3.14 【例題3】 地球の質量は 6.0×1024kg である。 地球を半径 6400kmの球としたとき、 次の問に答えなさい。 (1) 地球の質量は何gか。 有効数字2桁で答えなさい。 (2) 地球の半径は何cmか。 有効数字2桁で答えなさい。 (3) 地球全体の平均密度として最も適切なものを、次の① ~ ④ からひとつ選び、番号で答えなさい。 ただし 6.4 = 2.6×102、 円周率 = 3 とする。 ①5.4g/cm3 1 ② 5.8g/cm² ③ 54g/cm3 ④ 58g/cm3 (1) 1kg 1000g 6.0×1007g (2)1ku=100000 cm 6.4×1080 cu (3)

解決済み 回答数: 1