学年

質問の種類

数学 高校生

(2)の解説でn+1/2{(2n+1)+1}というのはどこから来ましたか??公式はわかるんですが数字がどっから来たのか分からないので教えて欲しいです!!

基礎問 206 第7章 数 列 133 格子点の個数 3つの不等式x0,y≧02x+y=2n (nは自然数)で表さ れる領域をDとする. (1)Dに含まれ,直線 z=k (k=0, 1,..,n) 上にある格子点 (x座標もy座標も整数の点)の個数をんで表せ. (2) Dに含まれる格子点の総数をnで表せ. (別解) 直線 y=2k (k=0, 1, ..., n) 上の 格子点は (0,2k), (1,2k), ... (n-k2k の (n-k+1) 個. また,直線 y=2k-1 (k=1, 2,...,n) 上の 格子点は (0, 2k-1), (1, 2k-1), …, (n-k, 2k-1) の (n+1) 個. よって, 格子点の総数は y 2n 207 y=2k 精講 計算の応用例として, 格子点の個数を求める問題があります。こ れは様々なレベルの大学で入試問題として出題されています。 格子点の含まれている領域が具体的に表されていれば図をかいて数 え上げることもできますが,このように, nが入ってくると数える手段を知ら ないと解答できません. その手段とは,ポイントに書いてある考え方です。 ポイントによれば, 直線 y=k でもできそうに書いてありますが、こちらを 使った解答は (別解) で確認してください. k=1 (n-k+1)+(n-k+1) い k=0 k=1 y-2k-1 2-(n-k+1)+(n+1) n 0 '\n-k++ x =n(n+1)+(n+1) =(n+1)(n+1) 12群 =(n+1)2 第 注 y=2k とy=2k-1 に分ける理由は直線 y=k と2x+y=2n の交点を求めると,(カー1k)となり,n-1がkの偶奇によって 20 整数になる場合と整数にならない場合があるからです。 解答 (1) 直線 =k上にある格子点は 例)(24)だった場合 (k, 0), (k, 1),, (k, 2n-2k) 1 8 3 5 0 0 Wy For 2n x=k 24-2 ポイントある領域内の格子点の総数を求めるとき の (2n-2k+1 個. 2n-2k 注 座標だけを見ていくと, 個数がわかります. I. 直線 x=k (または, y=k) 上の格子点の個数を kで表す (2)(1)の結果に,k=0, 1, n を代入して すべ 0 Ⅱ.Iの結果について計算をする て加えたものが、Dに含まれる格子点の総数. y=-2x+7h = (2n-2k+1) =24721 第7章 ◆ 等差数列 2 +1{(2n+1)+1} 等差数列の和の公式 = (n+1)2 演習問題 133 注 Σ計算をする式がkの1次式のとき, その式は等差数列の和を表 k=0 k=0 ろん、Σ(2n+1)-22k として計算してもかまいません。 しているので,212 (atan) (12) を使って計算していますが,もち 放物線y=x2 ① と直線y=n² (nは自然数 ...... ② がある. ①と② で囲まれた部分 (境界も含む)をM とする. このと 次の問いに答えよ. (1) 直線 z=k (k=1, 2,...,n) 上のM内の格子点の個数をn, んで表せ. (2) M内の格子点の総数をnで表せ.

解決済み 回答数: 1
数学 高校生

写真の質問に答えてください!

38 第 基礎例題 19 図形の個数と組合せ □ (1) 正五角形の3個の頂点を結んでできる三角形は何個あるか。 また、そ (2) 正五角形の2個の頂点を結んでできる線分は何本あるか。 [→発展別 うち正五角形と2辺を共有する三角形は何個あるか。 直線 図形の個数 図形の決まり方に注目 このような図形の個数を考える場合, 特に断りがなければ、できる図形が ものや長さの等しい線分なども, 頂点が異なれば 「異なるもの」と考える。 ****** CHART GUIDE 解答 (1) 正五角形のどの3個の頂点も一直線上にないから, 3個の頂 点を選ぶと1つの三角形が決まる。 よって、正五角形の3個の頂点を結んでできる三角形の個数は 5C3-5.4.3 3.2.1 -10 (個) また、正五角形と2辺を共有する三角形は、正五角形の1個の 頂点に対して1個決まるから, その個数は 5個 (2) 正五角形の5個の頂点のうち、2個の頂点を選ぶと1本の線 分が決まるから (1) 三角形 → 一直線上にない3点が与えられると1つ決まる。 (2) 線分 2点が与えられると1つ決まる。 Lecture 図形の個数と組合せ 三角形や直線(線分)の個数を求める問題では次のことに注意しよう。 (3) 三角形… 一直線上にない3点が与えられると1つ決まる。 例えば,どの3点も一直線上にない個の穴があるとき. 三角形の個数は nC3 異なる2点が与えられると1本引ける。 例えば,どの3点も一直線上にな 直線の本数は nC2 注意 n個の点のうち,ある3点が一直線上にあれば,引ける直 正解 線の本数は異なってくる。 正五角形のどの3 頂点も一直線上にな 41 正七角形が 基礎例題 分けの方法の数 ロロロ 色の異なる6枚の色紙を次のように分ける方法は何通 (1) 3枚,2枚, 1枚の3組に分ける (2) A,B,Cの3組に2枚ずつ分ける CHART GUIDE とき,引ける =10 (本) 2-1 どうして、正五角形の場 Legene 210 「ダメなので (1) 1組目に3枚, 2組目に2枚, 3組目に残りの1枚を与える。 (3) (2)と違い, 3つの組は同じ枚数で区別がない。 そこで, (2)において3つの組の区別をなくすと考える。 BC3通り (1) まず, 6枚から3枚を選ぶ方法は 次に、残りの3枚から2枚を選ぶ方法は 3C2通り 残りの1枚は1通りに定まるから, 求める方法の総数は ×3=60 (通り) 6.5.4 eCg×3C2=3.2.1 組分けの問題 分けるものの区別、 組の区別を明確に (2) (1)と同様に考えて 6C2X4C2=- (3) (2) の分け方で, A, B, 3! 通りずつできるから 90÷3!=15 (通り) (3) において, 3! で割る理由 上の例題で6枚の色紙を1, 2, 3,456 とする。 290通りのうち,例えば, ①:1,2, ① ② A,B,Cの区別 いえるから 解 6.5 2.TX |答 4.3 2.1 (3) 2枚 =90(通り) 2:3③:56 をA,B,Cに分ける方法は, 右の3! 通り Cの区別をなくすと, 同じものが を1列に並べる順列の総数 なくすとこれらは同じ組分けに 90÷3! で (3) の答えがでる。 組合せ A: 1, 2 A:1,2 A: 3, 4 A: 3, 4 A: 5, 6 A:5,6 に分ける (1) 3枚 2枚、1枚に 分ける順序はどう変え てもよい。 すなわち 6C3X3C1, 6C2X4C3, 6C2X4C1, 6C1X5C3, 6C1X5C2 のどれを計算してもよ い。 結果はすべて同じ になる。 39 ←個の組の区別をなく す → ! で割る B : 3, 4 B: 5, 6 B:1,2 B: 5, 6 B: 1, 2 B : 3, 4 (3) 14 EX 42 12冊の異なる本を次のように分ける方法は何通りあるか。 (1) 5冊, 4冊, 3冊の3組に分ける C: 5, 6 C: 3, 4 C: 5, 6 C: 1, 2 C: 3, 4 C: 1, 2 (2) 4冊ずつ3人に分ける

解決済み 回答数: 1
数学 高校生

数列の格子点の問題です 赤で囲った式がどこからきたのか分かりません💦

3つの不等式x≧0, y ≧0, 2x+y≦n (nは自然数)で表さ れる領域をDとする. (1) Dに含まれ,直線æ=k(k=0, 1,..., n)上にある格子点 (x座標もy座標も整数の点)の個数をkで表せ. (2) Dに含まれる格子点の総数をnで表せ. 114 Σ計算の応用例として, 格子点の個数を求める問題があります。こ れは様々なレベルの大学で入試問題として出題されています。 格子点の含まれている領域が具体的に表されていれば図をかいて数 上げることもできますが,このように,nが入ってくると数える手段を知ら いと解答できません.その手段とは,ポイントに書いてある考え方です. ポイントによれば,直線y=kでもできそうに書いてありますが, こちらを った解答は (別解) で確認してください. 精講 (1) 直線 x=k上にある格子点は (k, 0), (k, 1), , (k, 2n-2k) の (2n-2k+1) 個. 注 y座標だけを見ていくと, 個数がわかります. (2) (1)の結果に, k = 0, 1, ... n を代入して すべ て加えたものが, D に含まれる格子点の総数. Σ (2n-2k+1) b=0 n+1 解答 -{(2n+1)+1} 14y 2n 2n-2k ---- O ◆ 等差数列 |x=k An n ろん, (2n+1)-2として計算してもかまいません。 k=0 IC 等差数列の和の公式 =(n+1) 2 主計算をする式がんの1次式のとき, その式は等差数列の和を表 しているので,17/12 (a+an) () を使って計算していますが、もち

解決済み 回答数: 1